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The frozen-magnon approach is employed to calculate the exchange parameters and critical temperatures of
� and � MnAs. The data obtained are used to interpret the properties of the sequence of phase transitions in the
material. It is found that the system, despite well-defined Mn moments, cannot be quantitatively described
within the Heisenberg model. This conclusion is related to the properties of induced As moments. An unusual
nonmonotonous dependence of the induced As moments on the net magnetization of the Mn sublattice is
obtained. It is shown that such a behavior can be the reason for the canting of the Mn moments.

DOI: 10.1103/PhysRevB.74.214422 PACS number�s�: 75.50.Cc, 75.30.Et, 74.62.�c

I. INTRODUCTION

For many decades, manganese arsenide has attracted the
attention of researchers. Despite many efforts, the nature of
the unusual sequence of phase transformations in MnAs re-
mains a matter of debate.1,2 Other important features of the
system are the similarity of the magnetoresistance properties
to the colossal magnetoresistance in Mn perovskites3

and a strong magnetocaloric effect useful for magnetic
refrigeration.4 The unusual properties of the bulk system are
preserved in the MnAs films.5–7 The interest to MnAs has
been recently strongly enhanced by the possible applications
of the material in spintronic devices. �See Ref. 2 for a recent
overview on MnAs.�

The phase transitions in bulk MnAs take place at tempera-
tures T1=313 K and T2=399 K.8 The transformation at T1
��-MnAs to �-MnAs� is of the first order. It includes simul-
taneous discontinuous change of both crystal lattice and
magnetic state. The crystal lattice changes from hexagonal
NiAs type to orthorhombic MnP type. The magnetic state
below T1 is ferromagnetic. The nature of the nonferromag-
netic � phase remains the subject of discussions. The as-
sumption that the system is in an ordered antiferromagnetic9

state is not supported by neutron-diffraction experiments,10,11

which did not detect any long-range magnetic order. On the
other hand, the temperature dependence of the magnetic sus-
ceptibility deviates strongly from the Curie-Weiss law typi-
cal for the paramagnetic state of systems with well defined
atomic moments.

The �-� phase transformation at T2 is of the second order.
At this point the crystal lattice continuously returns back to
the NiAs type. Above T2, the magnetic susceptibility follows
the Curie-Weiss law demonstrating that the system is now in
a conventional paramagnetic state.

Different interpretations of the nature of the first-order
phase transition at T1 and the character of the magnetic state
between T1 and T2 have been proposed. Kittel12 assumed that
at T1 the exchange interaction changes sign from ferromag-
netic to antiferromagnetic. On the other hand, Goodenough
and Kafalas13 suggested that the phase transition takes place
between a high-spin state �T�T1� and a low-spin state �T
�T1�. Bean and Rodbell8 have shown within a framework of
a phenomenological thermodynamic treatment that the first-
order phase transformation ferromagnet-paramagnet is pos-

sible in systems with strong volume dependence of magnetic
characteristics.

A number of the DFT studies of �-MnAs have been per-
formed �see, e.g., Refs. 14 and 15�. They agree in the main
features of the density of states. Recently Niranjan et al.1

reported the ultrasoft pseudopotential calculations of the �
phase. By comparison of the total energies of the ferromag-
netic and antiferromagnetic configurations they came to the
conclusion that the � phase is characterized by the presence
of antiferromagnetically ordered planes. The exchange inter-
action between planes is assumed to be very weak which
leads to random relative orientations of the magnetic mo-
ments of different planes. Therefore the system as a whole
does not possess a long-range magnetic order.

The long-term coexistence of apparently contradicting
viewpoints on the magnetism of this important system makes
crucial a systematic parameter-free microscopic study of the
exchange interactions and magnetic transition temperatures
in MnAs. Very recently Rungger and Sanvito2 performed a
detailed study of the magnetostructural properties of MnAs.
Using pseudopotential SIESTA code16 they calculated the total
energies of a number of collinear magnetic configurations for
various crystal structures. The energies were fitted with a
classical Heisenberg Hamiltonian. The exchange parameters
obtained were employed to estimate the Curie temperature of
the system. Rungger and Sanvito drew the conclusion that
above T1 the � phase is already in the paramagnetic state.
The anomalous magnetic susceptibility between T1 and T2 is
explained by the variation of the Curie temperature accom-
panying the continuous structural transformation.

In the given paper we use the frozen-magnon approach to
calculate the exchange parameters and magnetic transition
temperatures of the � and � phases. The magnetic transition
temperatures are estimated and the nature of the � phase is
discussed. The limits of the Heisenberg model are revealed.
The unusual behavior of the induced As moments is obtained
and related to the canting of the Mn moments.

II. CALCULATIONAL DETAILS

The NiAs and MnP crystal structures are presented in Fig.
1. The unit cells of the structures contain, correspondingly,
two and four Mn atoms. In the NiAs structure, the Mn atoms
form a simple hexagonal lattice with the primitive translation
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along the z axis being half of the corresponding translation of
the NiAs structure. Therefore the Mn subsystem taken sepa-
rately has a higher periodicity than the system as a whole. In
the MnP structure, the periodicity of the Mn positions coin-
cides with the periodicity of the structure as a whole.

The calculations are performed with the augmented
spherical waves �ASW� method.17 The exchange-correlation
potential is chosen in the generalized gradient
approximation.18

To estimate exchange interactions we map the system on
the classical Heisenberg Hamiltonian

Hef f = − �
�,�

�
R,R�

��R��R��

JRR�
�� eR

�eR�
� �1�

In Eq. �1�, the indices � and � number different sublattices
and R and R� are the lattice vectors specifying the atoms
within sublattices, eR

� is the unit vector pointing in the direc-
tion of the magnetic moment at site �� ,R�.

The exchange parameters are evaluated using the frozen-
magnon approach.19 The calculation of the exchange param-
eters of a multiple-sublattice system includes several steps
and is more involved than in a single-sublattice case.20 In

this paper, to simplify calculations we use the property of the
NiAs structure that the cation atoms form a simple hexagonal
lattice with higher periodicity than the structure as a whole.
Since this cation lattice has one atom per unit cell the calcu-
lational scheme developed for single-sublattice systems can
be applied. The energy of the spiral magnetic configurations
�frozen magnons� of the form

	R
� = 	, 
R

� = q · �R + ��� �2�

is calculated for the wave vectors q varying within the Bril-
louin zone �BZ� corresponding to the Mn lattice that is twice
the BZ of the NiAs structure. In Eq. �2�, 	 and 
 are the
polar and azimuthal angles and vector �� determines the po-
sition of the atom of the �th sublattice of the Mn atoms. In
all calculations the direction of the induced As moments was
kept parallel to the direction of the net magnetization �z
axis�.

In the calculations we used 	=30°. The magnetic-force
theorem22 was employed in most of the calculations which
allows us to estimate the energies of the nonequilibrium
magnetic states avoiding self-consistent calculations. Within
the Heisenberg model the energy of the frozen magnons
takes the form

E�	,q� = E0�	� + sin2 	J�q� . �3�

A uniform mesh of the frozen-magnon wave vectors over the
first Brillouin zone has been employed. The interatomic ex-
change parameters are obtained by the Fourier transforma-
tion of J�q�. For the � phase the situation is more complex
since the Mn sublattice is distorted and the extra periodicity
characteristic for the � phase is lost. Since, however, the
atomic displacements are rather small we apply the same
procedure also for the � phase. In the calculations of the
frozen magnons for the � phase the q-mesh is slightly modi-
fied to take into account the contraction of the lattice.

III. CALCULATIONAL RESULTS

A. Density of states and magnetic moments

The densities of states �DOS� of the ferromagnetic MnAs
in � and � phases are presented in Fig. 2. The calculated
magnetic moments are mMn=3.32�B and mAs=−0.10�B for
the � phase and mMn=3.10�B and mAs=−0.40�B for the �
phase. The measured magnetic moment in the � phase is
mMnAs=3.4�B per chemical unit that is in good agreement
with the calculated value. The DOS reveals strong hybridiza-
tion of the Mn 3d and As 4p states. In the � phase the hy-
bridized states form, for example, the spin-down feature with
the center at about 0.15 Ry below the Fermi level. In the �
phase the corresponding feature of the spin-down DOS be-
comes broader and moves closer to the Fermi level. The
spin-up feature of the �-DOS at the Fermi level also contains
hybridized states. The presence of highly hybridized states
close to the Fermi level is an important property of the sys-
tem.

To verify the existence of the low-spin state in the �
phase, the fixed-spin-moment21 calculations have been per-
formed for magnetic configurations with different angles be-

FIG. 1. �Color online� Left part: MnAs in NiAs-type structure.
In the calculations we used the experimental parameters of the hex-
agonal lattice: a=7.039 a .u., c

a =1.534. Right part: A schematic pre-
sentation of the MnP-type structure. The shift of the Mn atoms for
three horizontal levels is shown. The same numbering of atoms is
used in both parts of the picture. The rectangle in the z=0 level
shows the projection of the orthorhombic unit cell on the xy plane.
Weak vertical shifts of the Mn atoms and the shifts of the As atoms
are not shown. The coordinates of the Mn atoms are �0,−� ,−��,
� 1

2 , 1
2 +� ,��, �0,� , 1

2 −��, � 1
2 , 1

2 −� , 1
2 +�� and the coordinates of the

As atoms are � 1
2 , 1

6 +� , 1
4 +��, �0,− 1

3 +� , 1
4 −��, �0, 1

3 −� , 3
4 −��, � 1

2 ,
− 1

6 −� , 3
4 +��. Here the three Cartesian coordinates are given, re-

spectively, in units of lattice parameters a, b=�3a, c. We used �
=0.0271, �=0.0047, �=0.0020, �=0.0245 �Ref. 1�. The parameter
a of the MnP structure is obtained by the 1% contraction of the
parameter a of the NiAs structure. The same c parameter is used.
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tween neighboring atomic moments. All calculations gave
similar dependences of the energy on the value of the Mn
moment. The functions have one minimum at mMn close to
the ground-state value that excludes the existence of the low-
spin state. The weak dependence of the atomic moment on
the magnetic configuration shows that MnAs is an itinerant-
electron material with well-defined atomic moments.

B. Exchange interactions and magnetic transition temperatures

The leading interatomic exchange interactions obtained
on the basis of the frozen-magnon calculations are collected
in Table I. There is a striking difference in the patterns of the
exchange interactions of two phases. In the � phase the
strongest is the ferromagnetic interaction between atoms 1

and 3 of the neighboring hexagonal planes. In the � phase
this interaction becomes antiferromagnetic. The interaction
with the second nearest neighbor along the z axis also
changes sign. The exchange interactions within the horizon-
tal planes are ferromagnetic in both cases. However, also
here there is large quantitative difference in the parameters.
The ferromagnetic in-plane interaction is stronger in the �
phase. The decreased symmetry of the � phase leads to a
partial lifting of the degeneracy of the exchange parameters
�J11�=J12�=J12 in the � phase�.

The big difference between the exchange interactions of
the � and � phases can be related to the important difference
in the DOS of the two phases �Fig. 2�, in particular, in the
region close to the Fermi energy. The change of the DOS is
reflected in the strong variation of the induced As moment.
The physical origin of these big changes lies in the sensitiv-
ity of the interatomic hybridization to the atomic shifts. This
sensitivity is a characteristic feature of the hexagonal MnAs.

Note that the character of the changes in exchange param-
eters obtained in our calculations differs considerably from
the results of the calculations by Rungger and Sanvito. It is,
however, important to notice that in our calculations of the
exchange parameters we used the energies of a large number
of noncollinear magnetic configurations with the angles be-
tween neighboring magnetic moments distributed between
zero and 2	 whereas Rungger and Sanvito used the energies
of collinear configurations with the angles between atomic
spins either zero or 180°. In systems where the exchange
parameters are sensitive to the variations of the electronic
structure these two schemes can give substantially different
estimations. �In Ref. 2, the DOSs are not shown that would
be useful for the comparison of two calculations.�

The value of the Curie temperature of a single-sublattice
system is given within the mean-field approximation �MFA�
and random-phase approximation �RPA� by the expressions

kBTC
MFA =

2

3
J�0�,

1

kBTC
RPA =

3

2

1

N
�

q

1

J�0� − J�q�
, �4�

where J�0��J0 is the sum of all Heisenberg exchange pa-
rameters connecting a given Mn atom with other Mn atoms.

The MFA values of the Curie temperature are 711 and
484 K correspondingly for the � and � phases. The RPA
value for the � phase is 574 K. For the � phase, the energies
of the frozen magnons for q values close to �0, 0, 2�

c � are
weakly negative revealing the instability of the ferromag-
netic state �see discussion below�. Since the RPA expression
for the Curie temperature contains reversed values of the
magnon energies it becomes numerically unstable for the �
phase. On the other hand, the MFA evaluates an average
exchange field acting on each atom and still provides useful
information.

The MFA value of the Curie temperature of the � phase is
substantially higher than the experimental estimation of
about 400 K obtained by the extrapolation of the magnetiza-
tion curve of the � phase to the zero value. The RPA gives
the Curie temperature closer to the experimental value
though still overestimating it. We will come back to the rea-

FIG. 2. �Color online� The spin-resolved DOS of � and �
MnAs. In the lower panels the filled curves present As 4p DOS and
the unfilled curves are Mn 3d DOS. The densities of states are
given per chemical formula unit.

TABLE I. Calculated leading interatomic exchange parameters
J1� and intersublattice exchange parameters J1�

0 �in mRy� for � and
� phases. The labeling of the atoms is according to Fig. 1. The
exchange parameters J�� and J��

0 ���1� can be obtained from the
parameters with �=1 taking into account the symmetry of the
lattice.

J12 J13 J11� J11� J12�

�-MnAs 0.49 1.52 0.49 −0.37 0.49

�-MnAs 0.77 −0.57 0.57 0.44 0.79

J11
0 J12

0 J13
0 J14

0

�-MnAs 0.87 2.39 2.87 0.63

�-MnAs 1.93 3.53 −1.80 0.93
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sons for this overestimation later turning now to the discus-
sion of antiferromagnetic configurations as possible ground
states of the system.

To include the nonferromagnetic states into consideration
we treat both � and � MnAs as four-sublattice systems with
sublattices corresponding to the four atoms in the unit cell of
the MnP structure �Fig. 1�. Such a treatment allows us to
account for the possibility of the antiparallel orientation of
the atomic moments of different sublattices and to estimate
the magnetic transition temperatures of the corresponding
magnetic structures.

Within the MFA, the magnetic transition temperatures of
different magnetic states of a multiple-sublattice system are
given by the expression kBTi

MFA= 2
3i where i are the

eigenvalues of the matrix of intersublattice exchange
interactions,23

J��
0 = �

R�

J��0���R��. �5�

The eigenvector corresponding to i determines the ith mag-
netic structure. The state with the largest i is the magnetic
ground state of the system.

Since all interatomic exchange parameters are known
from previous calculations they can be used to evaluate the
intersublattice exchange parameters J��

0 for �, �=1, 2, 3, 4
�Table I�. In the � phase, all intersublattice parameters are
ferromagnetic. Therefore the largest eigenvalue corresponds
to the ferromagnetic configuration with TC=711 K �this is
exactly the value we obtained above in the consideration of
the system as a single-sublattice ferromagnet�. The next ei-
genvalue is much smaller �2=0.72 mRy, TN=76 K� and
characterizes the magnetic transition temperature �Néel tem-
perature� for structure �+−+−� consisting from the antiferro-
magnetic horizontal planes. In the notation �+−+−�, + and −
denote opposite directions of the moments of the correspond-
ing sublattices �=1, 2, 3, 4.

In the � phase the interaction between the first and third
sublattices is antiferromagnetic. As a result, the largest eigen-
value 1=6.32 mRy corresponds in this case to the antifer-
romagnetic structure �++−−� that constitutes the ground
state of the Heisenberg system with the given set of the ex-
change parameters. The estimated value of the magnetic
transition temperature is TN=625 K. This antiferromagnetic
structure is formed by the ferromagnetic horizontal planes
that are oriented antiparallelly with respect to each other. The
eigenvalue corresponding to the ferromagnetic state 2
=4.60 mRy is second in the value and gives the estimation of
TC=484 K that is exactly the value of the Curie temperature
obtained above in the treatment where the ferromagnetic
state only was considered.

C. Limits of the Heisenberg model

Before discussing further the phase transitions in MnAs
we address an important question of the applicability of the
Heisenberg model to the quantitative description of MnAs.
The exchange parameters used in the estimations were evalu-
ated for the ferromagnetic reference state. In an ideal Heisen-
berg system the parameters do not depend on the reference

state. Our studies are, however, based on the first-principles
DFT calculations for an itinerant electron system. Therefore
the sensitivity to the procedure of the evaluation of the
Heisenberg parameters must be verified.

For the � MnAs, the use of the exchange parameters cal-
culated for the ferromagnetic reference state resulted in the
prediction of an antiferromagnetic ground state. To verify
this prediction, a direct DFT calculation of this antiferromag-
netic state has been performed. In disagreement with the pre-
diction, the energy of the antiferromagnetic configuration
was obtained to be higher than the energy of the ferromag-
netic configuration by 12 mRy per Mn atom. Therefore de-
spite well-defined moments of Mn atoms, the Heisenberg
model has limited quantitative validity in MnAs. The over-
estimation of the magnetic transition temperatures is another
factor supporting this conclusion. It is beyond the scope of
this paper to apply more complex model Hamiltonians to the
parameter-free studies of the thermodynamics of MnAs. The
number of such studies for magnetic compounds with well
defined atomic moments is still very small �see Refs. 24–26
for the examples of exceptions�. The importance of the prob-
lem, on the one hand, and increased computer power, on the
other hand, will certainly make the development and appli-
cation of new approaches to the thermodynamics of
itinerant-electron systems an important task for the nearest
future researches.

To get a guideline for the direction of necessary improve-
ments, the physical reason for the limits of the Heisenberg
model in the case of MnAs must be understood. The follow-
ing consideration helps to shed light on this problem.

Let us consider two groups of atoms with the magnetic
moments deviating from the z axis by polar angle 	. E2 is the
energy of the configuration where the sublattices numbered
by � have azimuthal angle 
=0 and the sublattices numbered
by � have azimuthal angle 
=180°. E1 is the energy of the
configuration where both groups of atoms have 
=0. Then
within the Heisenberg model, it can be shown that

�E�	� = E2�	� − E1�	� = 4 sin2 	�
��

J��
0 . �6�

The calculations �Fig. 3� have been performed for �=1, 2
and �=3, 4, first, with the use of the force theorem and,
second, by achieving self-consistency for all magnetic con-
figurations. In both cases, �E�	� deviates from the simple
Heisenberg form �Eq. �6��. Remarkable, however, is that the
results of two types of calculations differ substantially. In the
self-consistent calculations, the minimum of the total energy
is shifted from 	=0 to 	�10°. Therefore the ground state of
the � MnAs appears to be a slightly canted ferromagnet. The
range of the energy variation of the �E�	� curve obtained in
the self-consistent calculations is smaller than in the force-
theorem calculations. Therefore the exchange parameters
evaluated with the force theorem are overestimated in this
case that explains the overestimation of the Curie tempera-
ture obtained above.

An important reason for both the non-Heisenberg behav-
ior and the overestimation of the Curie temperature we find
in the behavior of the induced As moment. Since the states of
As mediate exchange interaction between the Mn moments
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the properties of these states, in particular the value of the
induced As moment, are of primary importance. From the
symmetry reasons, the induced As moment at 	=90° is zero.
The calculated induced As moment in the 	 interval from 0
to 90° deviates strongly from a simple proportionality to the
net magnetic moment of the Mn subsystem. Surprisingly, the
induced moment first increases with increasing 	 making the
dependence mAs�	� nonmonotonous.

The nonmonotonous character of the dependence reflects
the particular properties of the electronic structure of the sys-
tem. The following consideration helps us to understand the
physical reason for such a behavior. With the deviation of the
Mn moments from the parallel directions the spin projection
of all electron states of the system ceases to be a good quan-
tum number. The As 4p states can now couple simulta-
neously to both Mn 3d spin-up and Mn 3d spin-down states
�Fig. 4�. Depending on the deviation angle, different regimes
should be considered. For small 	, a weak coupling of the

As 4p states to the Mn 3d states with opposite spin projec-
tion modifies the As 4p spin-up and spin-down DOS only
slightly. The comparison of the DOS for 	=0 and 	=20°
shows that an important role is played by the coupling of the
As 4p spin-down states to the Mn 3d spin-up states at about
0.2 Ry below the Fermi energy. As a result, the number of
the occupied spin-down As 4p states increases. Since the
induced As moments are opposite to the Mn magnetization,
the value of the As moment increases �despite decreasing net
Mn magnetization�.

For large 	, the couplings to both spin components of the
Mn 3d states become close to each other leading, within the
self-consistent procedure, to strongly decreasing induced
moment. Since the As states mediate the exchange interac-
tion between Mn atoms this peculiar behavior of the induced
As moment is important for the Mn-Mn exchange interac-
tion: the 	 dependence of the exchange parameters and there-
fore non-Heisenberg behavior of the system can be expected.
We relate a weak canting of the magnetic structure obtained
in the total-energy calculations �Fig. 3� to the increase of the
induced moment of the As atoms for small nonzero 	. The
mechanism of the formation of a noncollinear magnetic
structure through the nonmonotonous behavior of the in-
duced moments of the atoms mediating exchange interaction
has not yet been discussed in the literature and must receive
an adequate attention in the future. The comparison of the
results of the calculations based on the force theorem with
the results obtained self-consistently shows that the force
theorem calculations underestimate the effects related to the
variation of the induced moments.

The deviation from the Heisenberg model is even stronger
in the case of the � phase. Again we relate this property to
the dependence of the induced As moment on the configura-
tion of the Mn moments. Since in the � phase the induced
moment is larger than in the � phase, the effect is stronger.
The predicted ground state is here again a canted ferromag-
netic configuration with the canting angle of about 20°.

FIG. 3. �Color online� The 	 dependence of the total energy
�upper panel� and magnetic moments �lower panel�. In the upper
panel the broken curves with filled symbols present the results of
force-theorem calculations for the � MnAs. The solid curves with
unfilled symbols show corresponding results of self-consistent cal-
culations. In both cases, the down triangles present the E1 values
and the up triangles present the E2 values. The squares give the
difference �E=E2−E1. The solid curve without symbols presents
E2 for the � MnAs �for better visual comprehension the curve is
scaled with factor 0.5�. All energies are counted from the energy of
the ferromagnetic state �	=0�. In the lower panel the curves with
symbols present the self-consistent moments in the � phase. The
unfilled symbols give the values of the Mn moment �up triangle for
the E1 case and down triangle for the E2 case�. The filled symbols
give the corresponding values of the induced As moments �these
curves are scaled with factor −20�. The curve without symbols pre-
sents the induced As moments of the � phase �scaled with factor
−5�.

FIG. 4. The spin-resolved As 4p DOS for three magnetic con-
figurations in the � phase.
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IV. CONCLUSIONS

The results of the calculations suggest the following in-
terpretation of the magnetic properties of MnAs that in the
main points agrees with the conclusions by Rungger and
Sanvito. Since the MFA estimations of magnetic critical tem-
peratures for the � phase are considerably lower than the
estimated TC of the � phase we draw the conclusion that at
the temperature T1 of the �-� transition the � phase is al-
ready in the paramagnetic state. The anomalous behavior of
the magnetic susceptibility between T1 and T2 can be ex-
plained by the variation of both the atomic moments and the
exchange interactions accompanying the continuous varia-
tion of the atomic structure in this temperature interval. In-
deed, our calculations have shown that the magnetic mo-
ments and, especially, the exchange interactions depend on
the atomic configuration. Since the Curie-Weiss law is char-
acteristic for the systems with temperature-independent

atomic moments and exchange parameters, it does not apply
here. Above T2 the atomic structure stabilizes leading to the
Curie-Weiss behavior of the paramagnetic susceptibility.

Summarizing, we performed parameter-free evaluation of
the exchange parameters and critical temperatures of � and �
MnAs that suggest that at the point of the �-� phase transi-
tion the � phase is already in the paramagnetic state. The
abnormal temperature behavior of the magnetic susceptibil-
ity of the � phase is explained by the strong dependence of
the exchange parameters on the atomic structure that experi-
ence continuous variation in the � phase. We found that the
system, despite well-defined Mn moments, cannot be quan-
titatively described within the Heisenberg model. We relate
this property to the properties of induced As moments. We
found unusual nonmonotonous behavior of the induced As
moments and have shown that such a behavior can be the
reason for the canting of the atomic Mn moments.
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