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Abstract

In this work, we present the results of microscopic calculation for the probability of excitation of Er ions by electron–hole pairs con-
fined in Si nanocrystals surrounded by silicon dioxide. For simplicity we consider the case of low pumping of nanocrystals when we may
take into account only one electron–hole pair inside of a single nanocrystal. We have found the probability of Er ion excitation in three
principally different cases for the location of the Er ion relatively to the nanocrystal: (i) Er ion is situated inside of the nanocrystal, (ii) Er
ion is situated at the boundary of the nanocrystal or very close to the boundary, and (iii) Er ion is situated at the considerable distance
from the nanocrystal so that the tunneling of electrons and holes may be neglected.
� 2005 Elsevier B.V. All rights reserved.
1. Introduction

Since a decade the material composed of Si nanocrystals
dispersed in SiO2 doped by Er is a subject of big interest for
creation of amplifiers or lasers on the basis of silicon tech-
nology [1,2]. The investigations have got an additional
stimulus after an observation of the effective gain at wave-
length 1.5 lm in waveguides based on such a material [3].
The gain is a consequence of an effective transfer of the
excitation generated in nanocrystals in form of electron–
hole pairs (excitons) to Er3+ ions [4]. Although till now
there is a lot of experimental results concerning this mate-
rial, the nanocrystals properties and the mechanism of the
excitation transfer are not sufficiently understood. There-
fore a theoretical investigation of excitons in nanocrystals
and the transfer process is a very important issue for
improvement of the material characteristics.

2. Theoretical model

In order to understand physical processes under partic-
ipation of electrons and holes confined in nanocrystals one
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has to know their energy spectrum and wave functions. For
modelling properties of the nanocrystals we use the enve-
lope function method, which should be a good approxima-
tion for not too small nanocrystals with radius Rnc > 2 nm
(they represent a considerable fraction of all nanocrystals).
Thus it should be pointed out that we are capable to apply
our results directly to describe properties of nanocrystals
with the size larger than the average in the experiments
[4–6]. However the results obtained can be also used for
qualitative understanding of properties of smaller
nanocrystals.

2.1. Electron and hole states

The conduction band of bulk Si has six equivalent min-
ima in the first Brillouin zone at positions �~k0;z ¼ ð0; 0;�
0:85ÞkX ; �~k0;y ¼ ð0;�0:85; 0ÞkX , and �~k0;x ¼ ð�0:85; 0;
0ÞkX , where kX = 2p/a and a = 0.543 nm is the lattice con-
stant of Si [7]. The minima are situated in the neighbor-
hood of the six X-points (there are three non-equivalent
X-points). The conduction band is doubly degenerate at
each of the X-points, which is a consequence of the fact
that Si lattice has two atoms in the elementary unit cell
and the origin can be chosen at the center of any of
them.
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Assuming that the Bloch amplitudes do not change
much in the neighborhood of the X-points and taking their
symmetry properties [8,9] into account, we can write one of
the three equivalent ground state wave functions
ðwe

z ; w
e
y ; w

e
xÞ of an electron in the nanocrystal as

we
z ¼ neð~rÞuc

1ffiffiffi
2
p ðei~k0;z~re�ik0a=8 þ e�i~k0;z~reik0a=8Þ; ð1Þ

where uc is one of two Bloch amplitudes of a bulk electron
at the (0,0,1)kX point in the Brillouin zone such that uc

gives zero overlap integral with Bloch amplitudes of the
bottom of the valence band and corresponds to the lower
conduction band at the ~k0;z point. This overlap integral
with the second Bloch amplitude us is not equal to zero
and us corresponds to the upper conduction band at ~k0;z.
There is a very important connection between these ampli-
tudes, uc ¼ use

i2kX z, which follows from the symmetry. The
envelope function ne in Eq. (1) satisfies the following
equation:

�h2

2mk

o2

oz2
neðx; y; zÞ þ �h2

2m?

o2

ox2
þ o2

oy2

� �
neðx; y; zÞ

þ Eneðx; y; zÞ ¼ 0; ð2Þ

where mk = 0.916m0, m? = 0.19m0 with m0 being the free
electron mass. Eq. (2) has been solved numerically assum-
ing infinitely high energy barrier at the boundary of the
nanocrystal and we have found energies of several lowest
states, Ee

i ¼ ~Ei�h
2=ð2mkR2

ncÞ with ~E0 ¼ 34:30; ~E1 ¼; 49:00
~E2 ¼ 67:49; ~E3 ¼ 80:32, and corresponding eigenfunctions.
More details to the calculation can be found in [10].

If we take into account the finite energy barrier for elec-
trons Ue = 3.2 eV [11] and use Bastard boundary condi-
tions [8,12] in the first order of the perturbation theory
we get following expression for the electron envelope func-
tion of the ground state at r P Rnc

~n
e

0ðrÞ ¼ �
1

je

m0

m?

q
Rnc

one
0

oq
þ m0

mk

z
Rnc

one
0

oz

� �
r¼Rnc

e�jeðr�RncÞ; ð3Þ

where q ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
and je ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2m0ðU e � E0

eÞ
q

=�h.
For description of the valence band structure in Si we

use generalization of the Luttinger Hamiltonian [13] in
the limit of vanishing spin–orbit coupling, which is justified
for Si

Ĥ ¼ ðAþ 2BÞ�h2k2 � 3B�h2ð~k � ~̂JÞ2; ð4Þ
where ~̂J is the unitary angular momentum operator acting
in the space of Bloch amplitudes,

A ¼ � 1

4

mh þ ml

mhml

;B ¼ � 1

4

mh � ml

mhml

; ð5Þ

mh ¼
m0

c1 � 2c
; ml ¼

m0

c1 þ 2c
; c ¼ 1

5
ð3c3 þ 2c2Þ. ð6Þ

Values of the constants c1, c2, and c3 for Si are 4.22, 0.53,
and 1.38, respectively [7]. Eigenfunctions of the Hamilto-
nian (4) can be found as eigenfunctions of the square F̂

2

of the full angular momentum operator ~̂F ¼ ~̂Lþ ~̂J
ð~̂L ¼ �i~r � o~rÞ and its projection F̂ z onto the axis z. Eigen-
values of F̂

2
and F̂ z are F(F + 1) and M, respectively, where

F is non-negative integer and M is integer, which absolute
value is not larger than F. The basis of the Bloch ampli-
tudes space can be chosen in the form of spherical compo-
nents u0 = Z, u� ¼ �

ffiffiffiffiffiffiffiffi
1=2

p
ðX � iY Þ of the corresponding

functions X = yz, Y = xz, and Z = xy, of the representa-
tion C250 . In order to find hole states with the lowest quan-
tization energies it is sufficient to look at states with F = 0
and F = 1. In such a case we have following solutions of
the Schrödinger equation assuming infinitely high energy
barriers at r = Rnc, written using spherical coordinate sys-
tem (r,h,/)

wP
00ðr; h;/Þ ¼ Anj1ðknbr=RncÞ

X
m1;m2

C00
1m11m2

Y 1m1
ðh;/Þum2

; ð7Þ

wSD
1Mðr; h;/Þ ¼ A0n

"
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nðrÞY 00ðh;/ÞuM :

þRD
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C1M
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Y 2m1
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#
; ð8Þ

wP
1Mðr; h;/Þ ¼ A00nj1ðk00nr=RncÞ

X
m1;m2

C1M
1m11m2

Y 1m1
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; ð9Þ

where

RS
nðrÞ ¼

j0ðk0nr=RncÞ
j0ðk0nÞ

� j0ðk0nbr=RncÞ
j0ðk0nbÞ

; ð10Þ

RD
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1ffiffiffi
2
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�

ffiffiffi
2
p j2ðk0nbr=RncÞ
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; ð11Þ

An; A0n; A00n are normalization constants, jl(x) are spherical
Bessel functions of the order l, Ylm(h,/) are spherical har-
monics, Cjm

j1m1j2m2
are Clebsh–Gordon coefficients, b ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðc1 � 2cÞ=ð2c1 þ 4cÞ
p

� 0:505, coefficients kn; k0n; k00n ðn¼
0;1;2; . . .Þ are found from the equations

j1ðknbÞ ¼ 0; j2ðk0nÞj0ðk0nbÞ þ j2ðk0nbÞj0ðk0nÞ ¼ 0;

j1ðk00nbÞ ¼ 0; ð12Þ

defining hole energies

Eh ¼ �
�h2

2mhR2
nc

k2. ð13Þ

The lowest hole energies correspond to k00 ¼ 4:286; k000 ¼
4:493; k01 ¼ 6:276; k001 ¼ 7:725; k0 ¼ 8:892.

In Ref. [10], the correction to the energy of an electron–
hole pair confined in the nanocrystal introduced by Cou-
lomb interaction was calculated taking into account dis-
continuity of the dielectric constant at the boundary of
the nanocrystal. Using values of the dielectric constant of
Si jSi = 12 and of the effective dielectric constant of the
surrounding medium jm = 4, the energy of the ground
exciton state was found as

E0
ex ¼ Eg þ 34:3

�h2

2mkR2
nc

þ 18:4
�h2

2mhR2
nc

� 2:3
e2

j1Rnc

. ð14Þ
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If we take into account finite height of the energy barri-
ers at the boundary of nanocrystals, we have to formulate
correct boundary conditions that is not a trivial task. In
order to simplify the problem, we recall that as it was
pointed out in [10,11] the states of the lowest hole level in
the quantum dot can be approximated by the triply degen-
erate states of the spherically symmetrical single-band
Hamiltonian with an effective hole mass given by

m� ¼ 3mhml

2ml þ mh

. ð15Þ

Energy of such states is

E0
h ¼ �

�h2p2

2m�R2
nc

; ð16Þ

and normalized wave functions are given by

w0
MðrÞ ¼ nh

0ðrÞuM ; nh
0ðrÞ ¼

1ffiffiffiffiffiffi
4p
p

ffiffiffiffiffiffiffi
2

Rnc

s
sinðpr=RncÞ

r
. ð17Þ

Such approximation overestimates the energy value by
13%. For the energy barrier Uh = 4.3 eV [11] using Bastard
boundary conditions [8,12] in the first order of the pertur-
bation theory we get following expression for the envelope
function at r P Rnc

~n
h

0ðrÞ ¼ �
1
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m�
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0
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����
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e�jhðr�RncÞ; ð18Þ

where jh ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2m0ðU h þ E0

hÞ
q

=�h.

2.2. Calculation of Auger excitation probability

We consider the process of an excitation transfer from
an electron–hole pair confined in a nanocrystal to strongly
localized 4f-electrons of an Er3+ ion that is mediated by
Coulomb interaction. The energy conservation by recombi-
nation of an exciton in the nanocrystal and excitation of an
Er3+ ion can be provided by local phonons. Thus the Auger
excitation is assisted by a multiphonon transition.

In accordance with Eq. (14) and with experimental data
[14] the ground energy of an exciton in the nanocrystal is in
the range 1.2–1.7 eV for the nanocrystals with Rnc > 2 nm.
Therefore such excitons can effectively transfer energy to
Er3+ ions being in the second 4I11/2 excited state (energy
of transition to the ground 4I15/2 state D02 = 1.24 eV) or
in the third 4I9/2 excited state (transition energy
D03 = 1.55 eV). For excitation of an Er3+ ion into the
fourth 4F9/2 excited state (transition energy D04 = 1.9 eV)
several phonons with a total energy by an order of magni-
tude exceeding kT at room temperature should be
absorbed that strongly decreases the probability of such a
process. Nevertheless we will also take into account a pos-
sibility of the excitation of this state. It is known from
experiment [15] that in contrast to transitions between the
ground 4I15/2 multiplet of an Er3+ ion and the upper excited
states, 4I11/2 and 4I9/2, the Huang–Rhys factor S [13,16] is
very small for the transition between the ground state
and the first excited 4I13/2 state (transition energy
D01 = 0.8 eV). Therefore phonons can not compensate the
energy excess of 0.4 eV.

Then we can write the probability in the following way

W tr ¼
2p
�h

X
f 0
jMff 0;mM j2

X
N

J TðNÞdðE0
ex�Dff 0 �N�hxÞ; ð19Þ

where �hx is phonon energy, N is number of emitted pho-
nons, Dff 0 is energy of transition between the initial state
in the ground 4I15/2 multiplet of the Er3+ ion and the ex-
cited state in one of the upper multiplets. JT(N) is the pho-
non factor calculated in the model of two shifted parabolic
potentials [16] and depends on the Huang–Rhys factor S,
the phonon energy �hx and temperature. Index f 0 in Eq.
(19) numerates all possible final states of the 4f-electron.
The bar over the absolute value square of the electron tran-
sition matrix element Mff 0 ;mM means averaging over all ini-
tial states f of the 4f-electrons of the Er3+ ion being in the
ground state, all three ground states of the confined elec-
tron numerated by m = x, y, z and all three ground states
of the confined holes numerated by M = �1,0,1.

General expression for the electron transition matrix ele-
ment is given by

Mff 0 ;mM ¼
4pe2

V

Z
d3r1

Z
d3Dr2w

�
e;mð~r1Þwh;Mð~r1Þ

�
X
~q

1

jðq;xÞq2
ei~qð~r1�~R�D~r2Þw�f ðD~r2Þwf 0 ðD~r2Þ; ð20Þ

where V is normalization volume, ~R is the position of the
center of the Er3+ ion. ~R; ~r1 are counted from the center
of the nanocrystal, D~r2 is the position of the 4f-electron rel-
ative to the center of the Er3+ ion, and wf, wf 0 are wave
functions of the 4f-electron of the ion being in the ground
and excited states, respectively. In Eq. (20) the time and
spatial dispersion of the dielectric constant j(q,x) is taken
into account.

Crucial for the evaluation of the electron matrix element
are the calculation of the overlap integral between electron
and hole Bloch amplitudes with the factor ei~q~r1 and the cal-
culation of the integral hf je�i~qD~r2 jf 0i taking into account
restrictions, which these integrals impose on the of the
transferred wave vector q. Depending on the position the
Er3+ ion relative to the nanocrystal different contributions
can play the leading role.

3. Results

3.1. Excitation of an Er ion inside a nanocrystal

It occurs that for the Er3+ ion situated inside the nano-
crystal or at a very small distance away from the nanocrys-
tal, the absolute value of the transferred wave vector is
around k0s = 1.15kX (1/k0s = 0.075 nm). So the interaction
has a contact character, i.e. it is determined by values of the
electron and hole wave functions at position where Er3+

ion is situated.
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The probability of excitation transfer averaged over the
orientation of the Er3+ ion and its position inside the nano-
crystal is given by the following expression

W inside
tr ¼ 3p

2

1

�h2x

e2

jRnc

� �2

Qjhu0jusij2
cf r4

f

R4
nc

J all
T ðRncÞ; ð21Þ

where

Q ¼ A020
3

R3
nc

Z
d3Rjne

0ð~RÞj
2½RS

0ðRÞ	
2 � 3:31; ð22Þ

jhu0jusij � 0.25 is the overlap integral between the bottom
of the valence band Cl

250 and the second conduction band
Dc

20 with k at the position in the first Brillouin zone where
the first conduction band has its minimum [17]. We have
neglected small contribution of the D-states to the hole
ground state wave function. The factor cf r4

f comes from
summation over f and averaging over f 0 of the absolute va-
lue square of the matrix element 1

3
hf jr2jf 0i, where

rf � 0.43 nm is the radius of the 4f-shell of the Er3+ ion
and the unknown factor cf is of the order of 1. J all

T ðRncÞ
gives contributions to the phonon factor from transitions
to all possible excited states of the Er3+ ion at given nano-
crystal radius Rnc. The exact value of the Huang-Rhys fac-
tor S is not known for the material considered here. We use
value S = 0.1, which is in accordance with experimental
values from [15] obtained for Er3+ ions in fluorozirconate
glass. The result of Eq. (23) is illustrated in Fig. 1, where
we have used cf = 1, S = 0.1 and demonstrated how the re-
sult changes if one changes the value of the phonon energy,
which we do not know. One should notice that in the
experiment the dependence of the excitation transfer on
the radius of the nanocrystal will be strongly smoothed
comparing to Fig. 1 due to the inhomogeneous distribution
of the nanocrystals size.
Fig. 1. Dependence of the probability of the excitation transfer to an Er3+

ion inside the nanocrystal W inside
tr on the nanocrystal radius Rnc after Eq.

(21) for the phonon energy equal to 120 meV (—) and 60 meV (� � �),
S = 0.1 and room temperature.
3.2. Excitation of an Er ion at the boundary or near the

boundary of a nanocrystal

Using electron and wave function at the boundary of a
nanocrystal calculated in Section 2.1 in the first order of the
perturbation theory we can write the result for the excita-
tion probability in the same way as Eq. (21) but now with
the radius dependent factor

QsurfðRncÞ ¼
1

2

4p
3

R3
nc

� �2

j~nh

0j
2

Z p

0

dh sin hj~ne

0ðhÞj
2
; ð23Þ

where h = arccos(z/Rnc). At distance d away from the
boundary of the nanocrystal, where the interaction occurs
due to tunneling, the result should be multiplied with factor
F(d,Rnc) = exp(�2(je + jh)d), which for nanocrystals con-
sidered here only very weakly depends on Rnc. Dependence
of the transfer probability to erbium at the boundary of the
nanocrystal on Rnc is presented in Fig. 2. In inset to this fig-
ure we show dependence of the tunnelling factor F(d,Rnc)
on the distance from the nanocrystal d for Rnc = 2 nm.
One can conclude that Auger-excitation due to tunnelling
is considerable for d [ 1 nm only.

3.3. Excitation of an Er ion at some distance from a

nanocrystal

Increasing the distance d between the Er3+ ion and the
nanocrystal it becomes more difficult for the confined car-
riers to transfer large momentum to the Er3+ ion. So it may
become preferable to divide the transferred momentum
between f-electrons of erbium and the nanocrystal bound-
ary. We have estimated corresponding contributions,
among which there is also a contribution corresponding
to the dipole–dipole interaction. It occurs that they give
negligibly small values of the transfer probability (less than
Fig. 2. Dependence of the probability of the excitation transfer to an Er3+

ion at the boundary of the nanocrystal W boundary
tr on the nanocrystal radius

Rnc for the phonon energy equal to 120 meV (—) and 60 meV (� � �),
S = 0.1 and room temperature. In the inset dependence of the tunnelling
factor F(d,Rnc) on the distance d of the Er3+ ion from the nanocrystal is
shown.
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102 s�1) so that they should play no role in the transfer
process.

4. Discussion and conclusion

For the transfer process to be effective the transfer prob-
ability should be larger than the probabilities of other exci-
ton recombination processes. For not too high pumping of
the nanocrystals such process is the radiative recombina-
tion which can be phonon-assisted or direct. The direct
recombination becomes possible because of the breakdown
of the momentum conservation rule due to confinement.

The probability of the direct recombination of the exci-
ton being in the ground state in the nanocrystal with radius
around 2 nm was found to be of the order 102 s�1 and it
increases to values around 104 s�1 for nanocrystals having
radius 1 nm. The probability of the phonon-assisted recom-
bination for nanocrystals with the radius around 2 nm is of
the order 104 s�1 increasing by an order of magnitude for
nanocrystals with the radius of 1 nm [18,19]. These values
are comparable to the measured exciton recombination
rates [6]. Thus we can conclude that under low pumping
conditions the Auger-excitation of erbium is the most effec-
tive exciton recombination process if Er3+ ion is situated
inside nanocrystal or at the boundary of nanocrystal. For
high pumping it would be important to estimate also the
probability of the Auger recombination of two excitons
created in the same nanocrystal.

In conclusion, we have obtained the probability of the
Auger excitation of the Er3+ ion by an electron–hole pair
confined in the nanocrystal being in the nanosecond range
if the ion is situated inside the nanocrystal. It is in the
microsecond range if the ion is at the boundary or very
close the boundary of the nanocrystal. If the distance
between the ion and the nanocrystal exceeds 1 nm the
Auger excitation transfer is not effective.
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