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Abstract. The recently introduced Korringa–Kohn–Rostoker nonlocal
coherent-potential approximation (KKR-NLCPA) provides a sound basis for
systematically including important environmental effects within an ab initio
description of disordered systems. Here we propose a fully relativistic formulation
of the KKR-NLCPA which is designed for the treatment of magnetically-ordered
alloys. Crucial to its implementation is a reformulation of the basic algorithm
and a symmetrization of the fundamental coarse-graining procedure, which we
describe in detail. As a first application of the approach we study the electronic
and magnetic properties of the ferromagnetic FePt system.

New Journal of Physics 9 (2007) 81 PII: S1367-2630(07)37398-9
1367-2630/07/010081+17$30.00 © IOP Publishing Ltd and Deutsche Physikalische Gesellschaft

mailto:diemo.koedderitzsch@cup.uni-muenchen.de
http://www.njp.org/
goffin
Text Box
TH-2007-07



2 DEUTSCHE PHYSIKALISCHE GESELLSCHAFT

Contents

1. Introduction 2
2. Relativistic formulation of the KKR-NLCPA 3

2.1. The basic equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.2. A robust and efficient KKR-NLCPA algorithm . . . . . . . . . . . . . . . . . . 5
2.3. Coarse-graining and symmetry . . . . . . . . . . . . . . . . . . . . . . . . . . 8

3. Application to FePt 12
4. Summary 15
Acknowledgment 16
References 16

1. Introduction

The coherent potential approximation (CPA) [1] is nowadays widely used to calculate the
electronic structure of disordered systems. In particular, its implementation within the Korringa–
Kohn–Rostoker (KKR) [2, 3] multiple scattering framework can be combined compatibly with
density functional theory, and has thus turned out to be a very powerful and flexible technique.
Applications have been made so far to a broad class of materials including random alloys
showing split-band behaviour such as CuxZn1−x, or alloys with very different components as
far as exchange splitting and spin–orbit coupling is concerned, e.g. FexPt1−x [4]. Also, a very
broad ranged spectrum of physical properties of random alloys have been studied using the
KKR-CPA, for example spectroscopic [5] and transport properties [6].

In spite of its wide application, the CPA has a natural limitation because it is a single-site
mean-field theory. Using the KKR-multiple scattering formalism the corresponding effective
medium that is meant to represent the configurational average of a random alloy of given
concentration is constructed by demanding that embedding an A or B atom of an alloy AxB1−x

as an isolated impurity into the medium should not lead on average to additional scattering. This
prescription obviously does not allow us to investigate fluctuations around the CPA average nor
to account for the influence of atomic short-range order. Accordingly, several schemes have been
developed in the past to overcome these limitations by developing a cluster generalization of
the CPA. Many of the early attempts to formulate CPA extensions had difficulties in yielding
results with the correct analytical (Herglotz) properties. Those proven to be analytic include the
molecular CPA [7], the travelling cluster approximation (TCA) [8], the cluster CPA (C-CPA)
[9] and the embedded cluster method (ECM) [10] (for an overview see [11], [12]), although
there remain shortcomings and problems connected with these techniques [11]. However, these
shortcomings can be remedied by the recent introduction of the nonlocal CPA (NLCPA) [13]
based on the dynamical cluster approximation (DCA) [14], which has been proved to be analytic.
The NLCPA was subsequently derived within the framework of KKR [15, 16].

Similar to the standard CPA, the NLCPA introduces a translationally invariant effective
medium. Using the KKR method this medium can be defined by a corresponding NLCPA
condition that demands that embedding of atomic clusters should on average lead to no excess
scattering. Although the resulting NLCPA scheme is numerically more demanding than the
standard CPA scheme, the first implementation [17, 18] has been done recently followed by

New Journal of Physics 9 (2007) 81 (http://www.njp.org/)

http://www.njp.org/


3 DEUTSCHE PHYSIKALISCHE GESELLSCHAFT

others [19]. A fully charge self-consistent version has also been recently implemented [20]
based on a total energy formulation which systematically takes into account the effects of charge
correlations (the Madelung energy). In contrast to approaches such as the locally self-consistent
Green function method [21]–[23] and the polymorphous CPA [24] which are specially designed
for the treatment of large systems using supercells that contain hundreds or even thousands
of atoms, such self-consistent-field (SCF)-KKR-NLCPA calculations can be done on a single
processor machine with reasonable efforts.

In this paper, we discuss the extension of the NLCPA scheme to the relativistic treatment
of magnetically-ordered systems. Crucial to its implementation is a robust iteration algorithm
together with the extensive use of symmetry. To do the former we show how a reformulation of
the original KKR-NLCPA algorithm [16] that avoids the use of the free electron Green’s function
can be recast into an NLCPA generalization of the so-called Mills-CPA-algorithm [8, 25]. To do
the latter we introduce a scheme for reducing the Brillouin zone integration volume to that of the
irreducible wedge of the underlying lattice. The flexibility and power of the resulting approach
is demonstrated by application to the alloy system Fe0.5Pt0.5.

2. Relativistic formulation of the KKR-NLCPA

2.1. The basic equations

Within multiple scattering theory the KKR-NLCPA medium is represented by the corresponding
single-site t-matrix t̂, the scattering path operator τ̂

ij and the effective structure constant
corrections δĜ that account for all nonlocal scattering corrections due to disorder configurations
(for more details see [16, 18]). Here and in the following the circumflex indicates a quantity
connected with the KKR-NLCPA medium. An underscore denotes matrices with respect to a
particular representation. Within a non-relativistic formulation the L-representation is used in
general with L = (l, ml) combining the angular momentum and magnetic quantum numbers, l

and ml, respectively. For the relativistic �-representation used below, � = (κ, µ) combines the
relativistic spin–orbit and magnetic quantum numbers, κ and µ, respectively [26].

To determine the above mentioned quantities self-consistently a coarse graining procedure
is applied. This implies in particular the introduction of a set of Nc real space cluster sites
{I} together with a corresponding set of cluster momenta {Kn} [18]. This procedure leads to a
subdivision of reciprocal space into non-overlapping tiles centred around the vectors Kn, with
Nc tiles covering the Brillouin zone volume. Within a tile centred at Kn the Fourier transform

δĜ(k) of δĜ
ij

is approximated by δĜ(Kn), being the average of δĜ(k) over the tile. According
to the construction of the real space cluster and its corresponding set {Kn}, δĜ(Kn) is connected
to its counterpart in real space via

δĜ
IJ = 1

Nc

∑
Kn

δĜ(Kn)e
iKn(RI−RJ ), (1)

δĜ(Kn) =
∑
I �=J

δĜ
IJ

e−iKn(RI−RJ ), (2)

New Journal of Physics 9 (2007) 81 (http://www.njp.org/)

http://www.njp.org/


4 DEUTSCHE PHYSIKALISCHE GESELLSCHAFT

with I and J denoting the cluster sites at RI and RJ , respectively (note, that from now on capital
indices exclusively enumerate sites within the cluster). In line with the coarse-graining procedure
applied to δĜ(k) one has for the scattering path operator in reciprocal and real space

τ̂(Kn) = 1

VKn

∫
(VKn )

d3k [m̂ − δĜ(Kn) − G(k)]−1, (3)

τ̂
IJ = 1

Nc

∑
Kn

τ̂(Kn)e
iKn(RI−RJ ). (4)

In equation (3) VKn
is the volume of the tile centred at Kn and G(k) is the standard KKR structure

constants matrix. In addition, m̂ = t̂
−1

represents the inverse of the KKR-NLCPA single-site
t-matrix.

Within the framework sketched above the standard single-site CPA approach can
consistently be generalized to a cluster formulation. This leads to the corresponding KKR-
NLCPA condition

τ̂
IJ =

∑
γ

Pγτ
IJ
γ , (5)

stating that the scattering path operator of the effective KKR-NLCPA medium is identical to
the average of the scattering path operators for clusters with configurations γ of Nc atoms
embedded into the KKR-NLCPA medium. The set of numbers {Pγ} contain the weights for the
configurations γ with

∑
γ Pγ = 1. Using the degrees of freedom in the choice of the probability

distribution {Pγ}, the NLCPA allows us to study short-range order effects. As τIJ
γ depends on the

single-site t-matrices of the embedded real atoms (tA and tB for a binary alloy AxB1−x) as well

as on τ̂
IJ one is led to a set of equations that has to be solved iteratively for t̂, τ̂

IJ and δĜ
IJ

.
An extension of the existing non-relativistic NLCPA formalism to a relativistic one is

obtained by expressing all the above mentioned quantities in a relativistic (κ, µ)-representation.
The Green’s function is constructed from the regular Zn

�(�r, E) and irregular solutions Jn
�(�r, E)

of the single site problem (i.e. the Dirac equation for a given potential) at site n by using the
relativistic scattering path operator [27], i.e.

G(r, r′, E) =
∑
��′

Zn
�(r, E)τnn′

��′(E)Zn′×
�′ (r′, E) −

∑
�

[
Zn

�(r, E)Jn×
� (r′, E) � (r′ − r)

+ Jn
�(r, E)Zn×

� (r′, E) � (r − r′)
]
δnn′

The averaging procedure follows the one given in [15, 16] so that

Ḡ(r, r′, E) =
∑
��′

[∑
γα

P(α, γ)Zα
�(rI, E)〈τII

��′ 〉α,γZ
α×
�′ (rI, E)

]
−

∑
�α

P(α)Zα
�(rI, E)Jα×

� (rI, E).

Here P(α, γ) denotes the probability of a cluster configuration with an α-atom at the site I in
a cluster with configuration γ . Using the NLCPA approximation 〈τII

��′ 〉α,γ is constructed from
an impurity cluster of configuration (α, γ) embedded in the NLCPA effective medium. The
resulting approximation to the average, G̃, is translationally-invariant and does not depend
on the choice for the cluster site I. Using G̃ one can access the density of states (DOS),
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spin- and orbital-magnetic moments, etc, in the usual way, e.g. the DOS as integral over the
volume VI of site I

n̄(E) = − 1

π
ImTrace

∫
VI

G̃(r, r, E) d3r,

or charge, spin- and orbital moments by using the operators A = 1, A = β
̂z and A = βl̂z,
respectively, in the following expression

〈A〉 = − 1

π
ImTrace

∫ EF

dE AG̃(r, r, E).

Please note, that in the our approach the spin–orbit coupling is not treated as a perturbation
but accounted for by solving the associated single-site equations for Z and J in a fully
relativistic way.

2.2. A robust and efficient KKR-NLCPA algorithm

First note that the algorithm suggested in [16] involves the real space cluster structure constants
matrix G, where the second underscore indicates a matrix with respect to the cluster sites {I}. Its
inclusion is however purely formal, i.e. to facilitate the scattering within the cluster. In practice
it is not actually necessary to involve G since this matrix can be straightforwardly eliminated in
all expressions [15]. This leads to the following modified KKR-NLCPA algorithm.

1. In the first iteration make a guess for the effective cluster t-matrix t̂
IJ

cl by putting an effective
scatterer t̄ on every site-diagonal block: t̂

cl
= t̄ ⊗ INc . t̄ can be approximated by use of

the average t-matrix approximation (ATA) [11]: t̄ = P(A)tA + P(B)tB with P(α) being the
probability for the occupation of site I by component α, or starting from a previous CPA
calculation: t̄ = tCPA. As mentioned above m̂

cl
= (t̂

cl
)−1.

2. Combine the site-off diagonal translationally invariant effective disorder term δĜ
IJ

and the
(site diagonal) inverse of the effective t-matrix m̂

µ̂ ≡ m̂ − δĜ = m̂
cl

+ G.

In the first iteration δĜ is set to zero.

3. Use a Fourier transformation to convert the matrix elements of µ̂ to coarse-grained
reciprocal space

µ̂(Kn) = 1

Nc

∑
I �=J

µ̂
IJe−iKn(RI−RJ ), (6)

where µ̂(Kn) = m̂ − δĜ(Kn).

4. Calculate the coarse grained matrix elements τ̂(Kn) with the modified equation (3)

τ̂(Kn) = 1

VKn

∫
(VKn )

d3k[µ̂(Kn) − Ĝ(k)]−1, (7)

and use equation (4) to get the real space scattering path operator τ̂
IJ = (τ̂)IJ .
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5. Determine the auxiliary quantity �̂ that combines the effective cluster renormalized

interactor �̂ and the real space Green’s function G

�̂ = �̂ + G = m̂
cl

+ G − τ̂
−1 = µ̂ − τ̂

−1
.

6. Do a loop over the 2Nc cluster configurations. For a particular cluster configuration fill up
the cavity and determine

τ
γ

= [m
γ
− �̂]−1.

Here m
γ

is a site diagonal matrix with mII
γ being equal either to mA or mB depending on

the configuration γ . Average over the configurations according to equation (5) to obtain a
new effective scattering path operator

τ̂ =
∑

γ

Pγτ
γ
. (8)

7. Update the auxiliary matrix µ̂

µ̂ = m̂
cl

+ G = τ̂
−1 + �̂. (9)

Check for convergence—if not converged proceed with step 3.

By performing the NLCPA iterations using µ̂, τ̂ and �̂ instead of m̂
cl

, τ̂, �̂ it is clear that G is not
needed. The inverse of the NLCPA single-site t-matrix is nevertheless available as the following
relation holds due to the fact the site-diagonal blocks of δĜ are zero

µ̂
II = m̂

II

cl = m̂, ∀I.

In some cases it helps to apply the simple mixing

µ̂
(n+1)

in
= (1 − α)µ̂

(n)

out
+ αµ̂

(n)

in
, α ∈ [0, 1],

when updating µ̂ in step 7, where µ̂
(n)

in
enters equation (6), µ̂

(n)

out
is obtained from equation (9)

and the mixing parameter α is chosen carefully.
The NLCPA algorithm sketched above will converge well in some situations, however in

general, and especially for relativistic calculations, convergence is very slow or cannot be reached
at all. The next step in the reformulation of the algorithm is to generalize an idea which goes
back to the work of Mills et al [8, 25], and recast the NLCPA condition equation (8) into

0 =
∑

γ

Pγ(τ
γ
− τ̂) =

∑
γ

Pγ[(m
γ
− µ̂ + τ̂

−1
)−1 − τ̂] = −τ̂

[∑
γ

Pγ[(m
γ
− µ̂)−1 + τ̂]−1

]
τ̂.

By demanding that

0 =
∑

γ

Pγ[(m
γ
− µ̂)−1 + τ̂]−1 =

∑
γ

PγX
γ

(10)
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with

X
γ

=
[
(m

γ
− µ̂)−1 + τ̂

]−1
,

an alternative form for the NLCPA-condition is obtained.4 The expression on the right-hand side
of equation (10) evaluated in the nth iteration can be regarded as a residual error matrix

E(n) = −
∑

γ

PγX
(n)

γ
−→ 0,

which has to go to zero upon convergence. This residual error is a result of working with µ̂
(n)

instead of the converged µ̂
(∞). Accordingly, one has

−E(n) =
[
(µ̂

(∞) − µ̂
(n)

)−1 + τ̂
(n)

]−1
,

which leads to

µ̂
(∞) = µ̂

(n) −
[
(E(n))

−1
+ τ̂

(n)
]−1

.

Therefore, we use the following guess for the next iteration

µ̂
(n+1) = µ̂

(n) −
[
(E(n))

−1
+ τ̂

(n)
]−1

= µ̂
(n) −

[
1 + E(n)τ̂

(n)
]−1

E(n).

The last step avoids working with the inverse of the error matrix which will become singular
upon convergence. This modified Mills-algorithm can also further be stabilized by averaging and
symmetrizing the site diagonal blocks of µ̂ and τ̂ over the sites I of the cluster. This procedure is
based on the observation that the site-diagonal blocks of the former matrices have to be identical
because of the translational symmetry of the NLCPA medium (this is also reflected by equation
(4) that shows that τ̂

II is independent of the site index I)

µ̂
II

avg
= 1

Nc

∑
J

µ̂
JJ

.

An additional means to stabilize the NLCPA algorithm is to symmetrize µ̂
II and τ̂

II according
to the symmetry of the system at hand. For a system with one atom per unit cell treated in a
non-relativistic way one has, for example

µ̂
II

sym
= 1

NU

∑
U

Uµ̂
JJ

U−1,

for NU symmetry operations U (see below). Corresponding stabilizing procedures could be
applied to the site-off diagonal blocks as well but do not seem to be necessary in general.

Using the above method leads to a very satisfactory convergence behaviour for a broad class
of systems. Using the maximum norm on the difference µ̂

(n−1) − µ̂
(n) for measuring the error in

4 Here, we ignore the possibility that the product AB can be zero even for neither A nor B being zero.
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the nth iteration we typically obtain a decrease in error of one order of magnitude per iteration.
Mills et al [8] showed that the Mills-algorithm is guaranteed to converge if the ATA is used as
a starting guess (see step 1 at the beginning of section 2.2). As the structure of the equations
is the same for the CPA and the NLCPA this should also apply here without modifications. In
practice, however, it turned out that starting the NLCPA iteration using a converged CPA-result
as a starting guess is more efficient.

2.3. Coarse-graining and symmetry

Within standard band structure calculations, symmetry considerations allow us to restrict
Brillouin zone integrations to an irreducible wedge. This also applies when calculating the
scattering path operator within the standard CPA [28]. Instead of dealing with the volume
VBZ of the first Brillouin zone one can restrict the integration to a volume VIBZ = VBZ/hG ,
where hG is the order of the crystallographic point group G [29]. To make the KKR-NLCPA
a computationally tractable first-principles cluster theory, similar symmetry considerations are
introduced here. For example, the Brillouin zone integration (equation (3)) does not scale with the
cluster size, and furthermore can be reduced to involve the irreducible wedge corresponding to the
symmetry of the effective medium. The only computational cost of a KKR-NLCPA calculation
over the conventional KKR-CPA is in principle connected with the configurational averaging
(equation (5)) in real space. However, all previous KKR-NLCPA implementations have used the
full Brillouin zone. Here we detail how to reduce the integration to the irreducible wedge, which
is particularly crucial for a relativistic implementation due to the larger matrices involved.

Starting from equations (3) and (4) it seems that because of the presence of δĜ(Kn) the
integration in equation (3) has to be done for each of the Nc tiles as it was done in all previous
implementations of the NLCPA. Nevertheless, one can exploit symmetry to obtain a substantial
reduction of the numerical effort when dealing with these equations. In the following it is shown
how the set of coarse-graining tiles can be reduced to a set of a few generating tiles. In addition
it is explained how the volume of a generating tile is reduced to its irreducible size. As shown
below it is then possible to restrict the integration also to the volume VIBZ as in the standard CPA.
For the sake of clarity we restrict the following derivation to a system with one atom per unit
cell. In case of a magnetic system a non-relativistic description is assumed (the relativistic case
will be examined later). All other more complex situations can be treated in an analogous way
(for the necessary group theoretical extensions see for example [28]).

Starting from the abbreviation

τ̂Kn
(k) = [m̂ − δĜ(Kn) − G(k)]−1, (11)

we rewrite equation (7) as

τ̂(Kn) = 1

VKn

∫
(VKn )

d3kτ̂Kn
(k).

When dealing with equation (11) one notes that δĜ(Kn) has the symmetry of the reciprocal
lattice, i.e.

δĜ(UKn) = UδĜ(Kn)U
−1, (12)
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where U is a symmetry operation of the system [28] and U denotes the corresponding
transformation matrix in the L- or �-representation, respectively. This relation is a direct
consequence of the connection of δĜ and τ in real space [16] that ensures that both quantities

have the symmetry of the effective NLCPA medium. As can be shown, the definition of δĜ(Kn)

via equation (2) then directly leads to equation (12).Also, δĜ(Kn) has the translational symmetry
of reciprocal space

δĜ(Kn) = δĜ(Kn + g), (13)

where g is a reciprocal lattice vector. The relations in equations (12) and (13) can now be exploited
in a twofold way.

2.3.1. Reduction to a set of generating tiles. Using the above definitions one has

τ̂UKn
(Uk) = [m̂ − δĜ(UKn) − G(Uk)]−1 = [U[U−1m̂ U − δĜ(Kn) − G(k)]U−1]−1

= U[m̂ − δĜ(Kn) − G(k)]−1U−1 = U τ̂Kn
(k)U−1. (14)

Therefore, if there is a symmetry operation U that transforms Kn into K′
n = UKn and the tile

around Kn to that around K′
n then τ̂(K′

n) can be generated by U using τ̂(Kn)

τ̂(K′
n) = τ̂(UKn) = U τ̂(Kn)U

−1. (15)

Use of this relation in general leads to a substantial reduction of the number of tiles to be treated.
To find out which tiles may be connected by symmetry according to equation (15) it is most
convenient to make use of the translational symmetry expressed by equation (13). This allows all
tiles to be shifted by a suitable reciprocal lattice vector to have a set of tiles for which the modulus
of Kn with respect to reciprocal lattice vectors is minimal. This is demonstrated in figure 1 for
the tiles given in [16] for a body-centred cubic (bcc) lattice and Nc = 16. Obviously, a symmetry
operation U may only connect two tiles centred at Kn and K′

n if these have the same distance
from the 
-point, i.e. if |Kn| = |K′

n|. For a system with one atom per unit cell the set of tiles splits
accordingly into Ns sets of tiles with each set having Nm

s members that have the same |Kn| and
which are connected by a symmetry operation U (if the symmetry of the system is lower than
that of the underlying Bravais lattice these sets characterized by the same |Kn| may split into
subsets that are not symmetry related, see below).Again this is demonstrated in figure 1 for a bcc-
lattice and Nc = 16. In this case we end up with Ns = 5 sets having Nm

s = 1, 6, 6, 2, 1 members
(ordered with increasing Kn, see figure 1). Obviously, one has Nc = ∑

s Nm
s . The numbers that

may occur for the individual Nm
s are restricted by symmetry, as shown below.

2.3.2. Reduction of the set of k-points of a generating tile to a set of irreducible ones. Another
consequence of the symmetry properties of δĜ(Kn) is expressed in the following relationship

τ̂UU−1Kn
(Uk) = τ̂Kn

(Uk) = U τ̂U−1Kn
(k)U−1,

which is obtained by using equation (14). For U−1Kn = Kn one therefore has

τ̂Kn
(Uk) = U τ̂Kn

(k)U−1.
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2

2

2 1

3

3

4

2

x

z

Γ
H

H

H

H

Figure 1. Reordering of the tiles centred at the Kn given in [16] for a bcc-lattice
and Nc = 16. Only those tiles with (Kn)y = 0, i.e. lying in the x–z plane are
shown here. The tiles shifted by a reciprocal lattice vector are indicated by a
cross (top left part). The various sets of tiles with same |Kn| are indicated by a
common shading and a number. The conventional Brillouin zone is shown with
a dashed line and high symmetry points (
 and H) are indicated. Thin crosses
denote reciprocal lattice points.

Here it is important to note that we can exploit the translational symmetry again. Accordingly
we accept all point symmetry operations U for which one has

Kn = UKn + g. (16)

Therefore, we can replace the integration over the tile by an integration over its irreducible part.

τ̂(Kn) =
∑

U

U

[
1

Ṽ Kn

∫
(Ṽ Kn )

d3k[µ̂(Kn) − Ĝ(k)]−1

]
U−1, (17)

where Ṽ Kn
= VKn

/hKn
and hKn

is the number of symmetry operations U occurring for the tile
centred at Kn. The integration over the irreducible volume Ṽ Kn

can be done using any standard
integration technique. However, it seems that the use of a point sampling technique with a regular
grid is most convenient.

The symmetry operations U occurring in equation (17) are restricted according to
equation (16) to those that map a k-point within the Kn-centred tile to k′ that lies—apart from
a possible shift by a reciprocal lattice vector g—into the same tile. Accordingly, the set of all
operations U form a point group GKn

of order hKn
. As this point group is at the same time a subset

of the crystallographic point group G, hKn
can take only a limited number of values. For cubic

symmetry with hG = 48 one may have hKn
= 1, 2, 3, 4, 6, 12, 16, 24 or 48, respectively.
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Figure 2. The figure illustrates the application of the two integration schemes
discussed in the text for a set of Nm

s = 4 symmetry related tiles. Left panel:
Selecting a generating tile at Kn allows its integration region to be restricted
to 1/hKn

of its volume (shaded area). The integration over the full volume is
recovered by application or equation (17) (represented by a thick arrow). The
integrals for the other three tiles centred at K′

n are then obtained via equation (15)
(indicated by thin arrows). Right panel: Restricting the integration in each tile to
1/hG of its volume. Application of equation (17) gives only 1/Nm

s of their proper
values. The full integration region is recovered only by (nU ′ − 1) applications of
equation (15). In addition, note that the reduced volumes of the individual tiles
have to be chosen in a consistent way.

Application of any operation U ′ with U ′ ∈ G \ GKn
to a k-point k ∈ VKn

leads by definition
to a point k′ /∈ VKn

. U ′ can therefore be used to generate a symmetry related tile starting from
the Kn-centred one. As we have to cover the whole Brillouin zone and as each tile of a set
has the same symmetry as the selected representing or generating one there are exactly hG/hKn

symmetry operations U ′ ∈ G to be considered. This is at the same time equal to the number of
members Nm

s of a set s introduced above.
The resulting scheme is illustrated in figure 2. Regrouping of the tiles leads to a set of four

symmetry related tiles. Selecting the left tile to be the generating one the corresponding τ̂(Kn)

is evaluated first. This is done by performing the integration only over the irreducible volume
VKn

/hKn
(dark shaded). The integral over the full volume of the tile VKn

is obtained by use of
equation (17). Finally, the symmetry related scattering path operators τ̂(K′

n) are obtained by
equation (15). Altogether, using the procedure described above one has to perform an integration
in k-space over exactly the same volume as in the case of the CPA where no subdivision or tiling
of the Brillouin zone is necessary.

Clearly, the scheme introduced here is not the only possible one. In fact one could also treat
each tile separately and perform the integration only over a reduced volume VKn

/hG that is in
general smaller than that used above. Applying now equation (17) however covers only hKn

/hG
of the volume VKn

. Therefore, accounting for the rest of VKn
can be achieved only by application

of equation (15), i.e. by mapping the corresponding results from the other (Nm
s − 1) members

of the set to the tile at hand. To do this consistently their irreducible volume has to be chosen
properly such as not to have integration regions covered twice while others are not accounted
for. This alternative scheme once more demonstrates that within the NLCPA it is in fact possible
to restrict the integration to 1/hG of the first Brillouin zone as in the standard CPA. This means
also that for both schemes sketched in figure 2 an integration volume of the same size has to be
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covered but its distribution over the Brillouin zone differs. However, it is obvious that the scheme
described first is much easier to implement and leads to a minimum of overhead—in particular
the number of applications of equations (15) and (17) is at its minimum as can easily be seen in
figure 2. Therefore it is the most efficient one.

For the symmetry considerations above a non-relativistic formulation or a relativistic one
applied to a non-magnetic system was assumed. When dealing with a magnetic system in a
relativistic way these considerations have to be adapted. First of all one has to note that using
a relativistic description for a magnetic system leads to a reduction in the number of symmetry
operations as compared to the paramagnetic state that in addition depends on the orientation of the
magnetization [30]. This of course does not affect the translational symmetry of a ferromagnetic
solid and for that reason the construction of the clusters [18] is not affected. On the other hand,
the reduction of the number of symmetry operations leads to an increase of the number of
generating tiles in k-space. Assuming the magnetization along the z-direction—the geometry
with the highest possible symmetry—one has for a face-centred cubic (fcc)-system with a cluster
size of Nc = 4 a reduction from four to three generating tiles instead of two for the case of a
non-magnetic system and/or a non-relativistic treatment. For a bcc-system with Nc = 16 the
reduction is from 16 to seven instead of 16 to five, respectively. Also, the irreducible volume
of the generating tiles is increased because of the lower symmetry. For the tile centred at the

-point, for example, the number of k-points to be dealt with is reduced only by a factor of 16
instead of 48 for the case of a non-magnetic system and/or a non-relativistic treatment. Finally
one has to note that in the latter case only unitary symmetry operations U (see equation (15))
occur, while for the magnetically ordered case also anti-unitary symmetry operations that involve
the time reversal operation may occur [30]. In spite of the various complications arising when
dealing with magnetic systems, use of the above symmetry considerations leads to a substantial
speed up of the calculations.

3. Application to FePt

We have implemented the NLCPA schemes outlined above within a program package that works
for magnetic systems within a non- as well as a fully-relativistic framework [31]. The potentials
used as input for the application of our NLCPA scheme presented below have been determined
self-consistently by using the spin-polarized relativistic version of the KKR-CPA [27] within the
framework of spin-density functional theory [32]. To demonstrate the application of the NLCPA
we have chosen the alloy system fcc-Fe0.5Pt0.5 as it contains rather different alloy partners. While
Fe has a high exchange splitting, leading in compounds and alloys to a spin-moment of 2–3µB, its
spin–orbit splitting is relatively small. Pt, on the other hand, is non-magnetic as a pure metal and
has a rather large spin–orbit splitting. Performing fully relativistic calculations for Fe0.5Pt0.5 that
treat magnetic ordering and all relativistic effects on the same footing implies in particular that the
corresponding single-site t-matrices tα(α = Fe,Pt) are not diagonal. For these reasons applying
the standard CPA to systems like Fe0.5Pt0.5 requires already the use of robust and efficient iteration
algorithms as, for instance, the above mentioned Mills-algorithm [4]. Use of its counterpart
described in section 2.2 together with the averaging and symmetrizing procedures allowed to
perform NLCPA calculations for cluster sizes of up to four sites with only moderately more
numerical effort than a standard CPA calculation. In particular, exploiting symmetry as described
in section 2.3 led to a reduction in run time by about one order of magnitude in comparison to the
unsymmetrized case.
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Figure 3. Spin-resolved DOS curves for Fe (top panel) and Pt (bottom panel)
in Fe0.5Pt0.5 as obtained by the NLCPA. The thin lines represent the DOS for
individual sites for all occurring cluster configurations for Nc = 4. The average
NLCPA result is represented by a thick line, while the thick dashed line shows the
CPA result, that for this system almost coincides with the NLCPA result. Note
that a lot of the individual underlying cluster configurations are equivalent for
symmetry reasons.

Figure 3 shows the resulting partial DOS for Fe and Pt in Fe0.5Pt0.5 obtained for a cluster
with Nc = 4 sites. Here we assumed the magnetization to point along the z-direction. In
dramatic departure from the conventional KKR-CPA calculations where only single-site partial
DOS would be apparent, here the thin lines represent the DOS for all the 24 = 16 different
configurations. There is a rather strong variation within these sets of curves—in particular for
Pt. Clearly, the average NLCPA result is however rather close to that obtained using the standard
single-site CPA. Indeed, the average result would only differ significantly if short-range order
was included.

In figure 4 the spin-magnetic moments for Fe and Pt are shown as a function of the cluster
occupancy together with the NLCPA result. For Fe one notes only a fairly weak fluctuation
around the NLCPA average. This is because the spin moment in this fcc system is already around
3µB, i.e. it is essentially saturated. Nevertheless, one notes a clear increase of the Fe moments
with decreasing Fe content in the cluster. This is fully in line with the concentration dependence
of the Fe moment in the alloy: with decreasing Fe concentration the spin magnetic moment in fcc-
FexPt1−x increases [33].Another interesting finding is that clusters that are inequivalent due to the
inclusion of spin–orbit coupling nevertheless have essentially the same spin-magnetic moment.
Using for Nc = 4 the cluster geometry as suggested by Rowlands et al [15, 16], the cluster sites
correspond to the corners of a tetrahedron with two sites lying in the basal plane of a cube at
z = 0 and two at z = 1/2. For the spin-moment it obviously does not matter much whether for
example for a cluster of two Fe atoms and two Pt atoms the Fe atoms are both in the basal plane
or one is at z = 0 and the other at z = 1/2 (in contrast to a non-relativistic calculation these
two situations are inequivalent as we account for spin–orbit coupling and assume the average
magnetization to point along the z-direction). As opposed to Fe, the induced spin magnetic
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Figure 4. Spin magnetic moment of Fe and Pt as obtained by the NLCPA. The
various data points show the moments for individual sites of all occurring cluster
configurations for Nc = 4 as a function of the occupation of the cluster by Fe and
Pt atoms, respectively. The horizontal lines represent the average NLCPA result,
that nearly coincides with the CPA result.
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Figure 5. As for figure 4 but for the orbital moments of Fe and Pt.

moment of Pt depends much more on the specific cluster configuration. Again in line with the
average Pt moment obtained as a function of the concentration in disordered fcc-FexPt1−x the Pt
moment increases when the Pt content within a cluster is reduced. This behaviour confirms the
expectation that an increase of the number of magnetic Fe atoms as nearest neighbours should
induce a higher spin magnetic moment on Pt. As for the spin moment of Fe, there is hardly any
dependence on the geometry of a cluster for a given occupation number.

The results for the spin–orbit induced orbital magnetic moments are shown in figure 5.As one
notes, for Fe the scatter of these moments is noticeably larger than for the spin magnetic moment.
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One reason for this is that there is no restriction present due to saturation. The other reason is
that orbital magnetic moments induced by spin–orbit coupling are quite sensitive to the DOS at
the Fermi level that here shows pronounced scatter (see figure 3). This can be demonstrated by
application of perturbation theory that allows to express the spin–orbit induced moment in terms
of the spin–orbit coupling strength and the spin- and orbital resolved DOS at the Fermi level [34].
In line with this we do not only find a pronounced variation of µorb

Fe with the occupation number
of the cluster but also on the cluster configuration for a given occupation number. For example
the moments for a cluster with two Fe atoms at z = 0 differ from a cluster with a Fe atom at z = 0
and z = 1/2. If all cluster configurations were given the same weight Pγ (see equation (5)) there
would of course be no change in the magntitude of the orbital moment when the magnetization is
oriented, e.g. along the x-direction instead of pointing along the z-direction. On the other hand,
assuming a short range order that would make these two situations inequivalent this would lead
to an anisotropy in the orbital magnetic moment. For the spin–orbit induced orbital moment of
Pt we find a similar behaviour as for Fe. Because of the larger spin–orbit coupling strength µorb

Pt

is nearly as high as µorb
Fe although µ

spin
Pt is much smaller than µ

spin
Fe .

Finally one should note that similar investigations on the environmental influence on
magnetic properties have also been done in the past on the basis of the ECM [35] and using
supercell techniques [36]. However, as a self-consistent theory, the NLCPA obviously supplies
a much more sound and efficient basis for this type of investigation, particularly in the presence
of short-range order.

4. Summary

In this paper we have proposed a fully relativistic formulation of the KKR-NLCPA which is
designed for the treatment of magnetically-ordered alloys. Crucial to its implementation is a
reformulation of the algorithm by the adaption of the so-called Mills-CPA-algorithm, leading to
a very robust and efficient iteration scheme. An additional and substantial reduction of numerical
effort could be achieved by making use of symmetry. As a consequence the computational effort
for the Brillouin zone integration in the NLCPA is essentially the same as in the CPA. We note
that there is of course increased computational cost in real space due to averaging over the 2Nc

cluster configurations (where Nc is the number of sites in the cluster), and importance sampling
of the configurations is needed for large cluster sizes. We also note that the methods introduced
in this paper equally apply to the non-relativistic case and thus can also be used to achieve an
efficient and robust implementation of the non-relativistic KKR-NLCPA technique.

The power of the scheme presented here was demonstrated by an application to the random
alloy system fcc-Fe0.5Pt0.5. The most remarkable result for this system is that within clusters of
given composition but different configuration there is hardly any difference of the spin magnetic
moment (in the absence of short-range order). For the spin–orbit induced orbital moments, on
the other hand, a pronounced variation for the different configurations is present.

In contrast to the standard CPA, the NLCPA allows us to study not only the configurational
average but also the influence of cluster configurations contributing to the average. This has been
demonstrated here by the results for the FePt system, and further possible investigations include
applying a non-random cluster probability distribution to study the influence of short-range order.
Therefore the NLCPA supplies a formal basis for a discussion of inhomogeneous line broadening
as seen for example in core level photo emission [37] and Mössbauer-spectroscopy [35] of
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disordered systems. The NLCPA could also have an important impact in magneto-resistance
calculations, for example the study of the influence of short-range order on magnetic anisotropy.
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