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Abstract – We study theoretically the charge polarization and the charge current dynamics of a
mesoscopic ring driven by short asymmetric electromagnetic pulses and threaded by an external
static magnetic flux. It is shown that the pulse-induced charge polarization and the associated light
emission is controllable by tuning the external magnetic flux. Applying two mutually perpendicular
pulses triggers a charge current in the ring. The interplay between this nonequilibrium and the
persistent currents is investigated and the conditions under which the pulses stop the persistent
current are identified.
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Introduction. – Quantum structures with a ring
confining geometry have served over the years as a
paradigm for the demonstration of quantum-interference
phenomena such as the Aharonov-Bohm effect and the
persistent (equilibrium) current [1–4] that emerges if the
ring is pierced by a static magnetic flux. The persistent
current has also been considered when a time-dependent
magnetic field with a static component [5–12] is being
applied, and it has been found that the current diminishes
when the static component vanishes. Another possibility
for generating (nonequilibrium) current is to irradiate the
ring with circular polarized light, [13–15] and references
therein. In principle, this approach is feasible for a size-
quantized system and if the radiation frequency is tuned
such that the rotating-wave approximation is applicable
and counter-rotating contributions to the current are
thus negligible. Hence, this approach is expected to be
particularly useful for molecular ring structure, cf. ref. [15]
and references therein. A further development of this
method in the framework of the quantum optimal-control
theory was published recently [16]. Another approach
for current generation which does not rely on the level
quantization and resonant excitations, is based on an
asymmetry of the electric field amplitude of the applied
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pulse [17,18]. As experimentally demonstrated [19–22]
the optical cycle of such asymmetric pulses consists
of a short and strong half-cycle followed by a much
longer and weak half-cycle of an opposite polarity. The
charge dynamics is mainly triggered by the strong, short
half-cycle [17,18,23,24] and hence these pulses are referred

to as half-cycle pulses (HCP). In general, HCPs are
capable of inducing nonequilibrium electric dipole and
direct charge currents [18,23,24], even if the system is
not lacking an inversion symmetry, in contrast to the
well-known photovoltaic effect [25,26]. For isolated rings

(and without an external magnetic flux), applying one

linearly polarized HCP induces a charge polarization.
Applying in a perpendicular direction to the first pulse a
second HCP leads to a charge current that can be tuned
by varying the properties and the time-delay between the
two pulses. The question which has not yet been addressed
and will be of concern here is how the HCPs-induced
charge polarization and the charge current are influenced
by the persistent current generated by a static magnetic
flux. As shown below, the HCP-induced nonequilibrium
charge polarization and the associated emitted radiation
are tunable by changing the magnitude of the static
magnetic flux. The nonequilibrium current triggered
by two time-delayed HCPs can be tuned to cancel the
magnetic-flux–induced equilibrium current offering thus a
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possibility for time switching of the persistent current on
a picosecond time-scale.

Theoretical model. – For the sake of simplicity, we
consider here an isolated single channel 1D ballistic ring
with N electrons and radius ρ0 at low temperatures. This
treatment is appropriate if the width and the height of
the ring are smaller than both the ring radius and the
Fermi wavelength of the carriers. The generalization to
the multi-channel case can be done along the lines of
refs. [17,27] where it is shown that the multi-channel
case does not change qualitatively the predictions of the
1D model. The ring is pierced by an external magnetic
flux φ and is subjected to a sequence of short, linearly
polarized half-cycle pulses. The light propagation direction
is perpendicular to the plane of the ring. The Hamiltonian
describing the dynamics of the system is given by

Ĥ(t) = Ĥ0+ V̂int, (1)

where

Ĥ0 =
1

2m∗ρ20

(
−i� ∂
∂θ
+ �
φ

φ0

)2
; V̂int = eE(t) ·ρ. (2)

Here e is the elementary charge, E(t) stands for the
time-dependent electric field of the applied pulses and
the vector ρ= (ρ0 cos θ, ρ0 sin θ) describes the electron
position. m∗ and φ0 are the electron effective mass and
the flux quantum, respectively. In what follows we expand
the field operator Ψ̂(θ, t) on a basis of eigenstates ϕn(θ)
of Ĥ0, i.e.,

Ψ̂(θ, t) =
∑
n

ĉn(t)ϕn(θ), Ĥ0ϕn(θ) =E
(0)
n ϕn(θ). (3)

The components of the time-dependent density matrix are
expressed as ρmn(t) = 〈ĉ†m(t)ĉn(t)〉. Here 〈...〉 denotes the
expectation value which is taken with respect to the initial
state of the system.
Now we turn to the specification of the employed light

pulses. The duration τd of the experimentally available
HCPs is in the subpicosecond time scale. On the other
hand, for typical ballistic mesoscopic rings (ρ0 ∼ 1µm)
the time τ

F
a particle at the Fermi level needs for a

round trip is tens of picoseconds, meaning that τd� τF .
In this case, the so-called impulsive approximation (IA)
can be employed to describe accurately the dynamics of
the system [28]. Within the IA the action of the HCPs
is encompassed in the matching conditions (4) for the
density matrix at the instances before and after the pulses
are applied while the system propagates in a pulse-free
manner at any other time1 (note that in the absence
of the pulses the magnetic flux is still present). To be
specific, let us consider the case where two HCPs that

1Note that we consider time delays τ between consecutive pulses
that are much shorter than the relaxation and dephasing times.
Relaxation and dephasing during the time interval t < τ is then
neglected.

are linearly polarized in the x and y directions are applied
respectively at the times t1 = 0 and t2 = τ . For the density
matrix we find within the IA that (we use the abbreviation
|ϕn(θ)〉 ≡ |n〉)
ρmn(0

+) =
∑
k,l

〈n|e−iα1 cos θ|l〉〈k|eiα1 cos θ|m〉ρkl(0−),

ρmn(τ
+) =

∑
k,l

〈n|e−iα2 sin θ|l〉〈k|eiα2 sin θ|m〉ρkl(τ−).
(4)

Here the dimensionless quantity αj characterizes the
action transferred to the system

αj = ρ0pj/�, (5)

while pj describes the strength of the pulse Ej

pj = e

∫ tj+τd
tj

Ej(t) dt. (6)

The subindex j = 1, 2 refers to the first and second pulse
(with the same duration τd). We remark here that for a
different propagation direction of HCPs, e.g. in the plane
of the ring, and/or for the strong excitation regime (α� 1)
the time-dependent magnetic-field component of the pulse
may in general affect the dynamics of the electron system
and should be included in the Hamiltonian (1). This is to
be contrasted with the case discussed in this paper where
the magnetic field associated with the HCP is moderate
and lies in the plane of the ring (where electrons are
confined).
Within the relaxation time approximation the equation

of motion for the density matrix reads

∂ρmn

∂t
= i
E
(0)
m −E(0)n
�

ρmn

−δmn
T1

[
ρmn− ρnn(0−)

]− 1− δmn
T2

ρmn, (7)

where δmn is the Kronecker symbol and T1 and T2 are the
relaxation and dephasing times, respectively. Equations
(4)-(7) together with the initial condition that before
the application of the pulses the system is in a thermal
equilibrium, i.e.,

ρmn(0
−) = 2δmn

(
1+ e

− [E
(0)
n −η]
k
B
T

)−1
, (8)

determine completely the time evolution of the density
matrix. The factor 2 in the Fermi-Dirac distribution (8)
accounts for the two-fold spin degeneracy and the chemical
potential η is set by the requirement of the conservation
of the particles’ number N .
We are particularly interested in the study of the charge

polarization and the currents induced in the ring. The
charge polarization along the x-axis is determined by the
x-component of the dipole moment operator. After some
algebra one obtains for the charge polarization

µ(t) =−eρ0Re
[∑
n

ρn,n−1(t)

]
. (9)
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This result is remarkable. It tells us that the time depen-
dence of the charge polarization does not depend on
the time evolution of the diagonal components of the
density matrix, i.e., by tracing the evolution of the induced
polarization one can obtain physical information that is
exclusively due to dephasing.
Using the first of eqs. (4) and eqs. (7)-(9) and performing

the same steps as in ref. [23] we can write the charge
polarization of the ring after the application of the first
HCP as

µ(t) = −eρ0α1Θ(t)[J0(Ω)+J2(Ω)] sin
[
2πt

tp

]
e−t/T2

×
∑
n

ρnn(0
−) cos

[
4πt

tp

(
n+

φ

φ0

)]
, (10)

where Θ(x) denotes the Heaviside step function and Jl(x)
is a Bessel function of the order l. Furthermore, we
introduced the quantities

Ω= α1

√
2− 2 cos(4πt/tp), (11)

tp = 4πm
∗ρ20/�. (12)

The charge current density operator can be expressed in
terms of the field operators (3) and the angular component
of the vector potential Aθ = φ/(2πρ0) as follows:

ĵ =
ie�

2m∗ρ20

[
Ψ̂†(θ, t)

∂Ψ̂(θ, t)

∂θ
− ∂Ψ̂

†(θ, t)
∂θ

Ψ̂(θ, t)

]

− e2

ρ0m∗c
Ψ̂†(θ, t)AθΨ̂(θ, t). (13)

Upon mathematical manipulations we find for the charge
current

I(t) = 〈〈ĵ〉〉= I0
∑
n

(n+φ/φ0)ρnn(t). (14)

Here

I0 =−e�/(m∗ρ20) (15)

sets the scale of the current magnitude. The double
bracket 〈〈...〉〉 stands for angular integration and expecta-
tion value computation. In contrast to the charge polar-
ization, the charge current depends only on the diagonal
elements of the density matrix. Therefore, dephasing
and relaxation can be independently investigated by
tracing the charge polarization and the charge current,
respectively.
Exploiting eqs. (4)-(7) and (14) we deduce after some

algebra the following relation for the total charge current2

I(t) = Ipers+Θ(t− τ)Idyn(t), (16)

2Self-inductive effects turned out to be completely negligible in
comparison to Ipers and Idyn(t).

where
Ipers = I0

∑
n

(n+φ/φ0)ρnn(0
−) (17)

is a static (persistent current) component induced by the
magnetic flux and

Idyn(t) =
I0α2

eρ0
µ(τ)e−t/T1 (18)

is a dynamical component due to the action of the
pulses and is determined by the polarization µ(τ) of
the ring at the time the second pulse is applied [17].
Note also that the dynamical component of the current
only appears after the second pulse is applied, i.e., it is
necessary to apply two orthogonal linearly polarized HCPs
in order to produce an additional clock-wise anti-clock-
wise symmetry breaking [17] (in case of the persistent
current this symmetry break is brought about by the
magnetic-flux–induced time-reversal symmetry breaking).
It follows from eq. (16) that the static part of the total

charge current induced in the ring does not depend on the
application of the HCPs and is not modified by them (i.e.,
the persistent current is really persistent). On the other
hand, the dynamical component Idyn depends on both the
external magnetic flux and the pulse parameters because,
as shown below explicitly, the dipole moment µ(τ) is a
function of φ.
An important consequence of eqs. (16) and (18) is that

a magnetic-flux–induced persistent current in a ballistic
ring can be temporally stopped by applying HCPs, for all
the parameters determining the sign and the magnitude of
Idyn are known (cf. eqs. (5), (15) and (19)). We note that
the build-up time of Idyn (which determines the switch-
off time of I, i.e. the cancellation of Ipers) is set by the
duration of the HCP which can be in the subpicosecond
regime. As Idyn relaxes according to eq. (18) Ipers emerges
again; however, upon the application of another sequence
of HCPs we can switch off again the total current (16).
It should be remarked here that the decomposition of

the charge current in a statical and a dynamical compo-
nent is valid within the relaxation time approximation
employed here. It might well be that the inclusion of
memory and nonlinear effects prevents such a simple
structure of the current. A definitive conclusion on this
point would require the treatment of two-particle and
higher-order correlations that is a challenging task for
inhomogeneous distributions (non-diagonal density matrix
elements). On the other hand, for weak excitations and
small temperatures we expect nonlinear effects (in the field
strength and in relaxation) to be marginal and the corre-
lation effects on the relaxation to be of less importance
(due to the same reasons as for the ground state).

Explicit results and numerical demonstrations. –
For zero temperature we were able to perform the sum in
eq. (10) analytically to obtain

µ(t) =−eρ0α1Θ(t)[J0(Ω)+J2(Ω)]s(t)e−t/T2 , (19)
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Fig. 1: The time dependence of the charge polarization µ(t) as a function of the magnetic flux φ for various values of the
pulse strengths that result in different values of the transferred action α1 (cf. eq. (5)). For the sin-square HCP having duration
τd = 1ps and the ring radius of r0 = 1µm the value of the transferred action α1 = 0.1 (α1 = 1, α= 10) corresponds to the peak
electric field strength E0 = 1.32V/cm (E0 = 13.2V/cm, E0 = 132V/cm). The time is expressed in units of tp = 4πm

∗ρ20/�.

where

s(t) = 2 cos

[
4πt

tp

(∣∣∣∣ φφ0
∣∣∣∣−12
)]
sin

[
Nπt

tp

]
, N= 0 (mod 4);

s(t) = cos

[
4πt

tp

φ

φ0

]
sin

[
(N +1)πt

tp

]

+cos

[
4πt

tp

(∣∣∣∣ φφ0
∣∣∣∣−12
)]
sin

[
(N − 1)πt
tp

]
,

N= 1 (mod 4);

s(t) = 2 cos

[
4πt

tp

φ

φ0

]
sin

[
Nπt

tp

]
, N= 2 (mod 4);

s(t) = cos

[
4πt

tp

(∣∣∣∣ φφ0
∣∣∣∣−12
)]
sin

[
(N +1)πt

tp

]

+cos

[
4πt

tp

φ

φ0

]
sin

[
(N − 1)πt
tp

]
, N= 3 (mod 4).

(20)

These results apply for φ/φ0 ∈ [−1/2, 1/2], other-
wise s(t;φ/φ0) is given by the periodicity condition
s(t;φ/φ0+1) = s(t;φ/φ0). In the limiting case φ= 0
eqs. (20) simplify to the results obtained in ref. [23].
Inserting the expressions for µ(t) given by eqs. (19)
and (20) at t= τ into eq. (18) yields an analytical

expression for the dynamical part of the current. The
persistent part of the current was calculated previously
in ref. [29].
For an illustration we performed explicit calculations for

the case of a 1D GaAs ring with N = 100, radius ρ0 = 1µm
at zero temperature. The time dependence (ignoring the
effects of dephasing 3) of the induced charge polarization is
shown in fig. 1 for different values of the external magnetic
flux φ and pulse strengths yielding different α1 (cf. eq. (5)).
The time is expressed in units of the characteristic time
tp. For certainty we assume here that the time profile of
the HCP electric field is given by E(t) =E0 sin

2[πt/τd]
for t∈ (0, τd) and E(t) = 0 outside of this time interval. In
this case we have α1 = ρ0eE0τd/(2�). As seen from fig. 1
different patterns of the charge polarization evolution
can be tailored by changing the applied flux and/or the
pulse strength. This observation is of particular relevance
since the emission properties of the ring are determined
by the time oscillations of the charge polarization [18,30].
Thus, the system proposed here could serve as a source of
electromagnetic radiation with magnetic-flux controllable

3Within the relaxation time approximation, the effect of dephas-
ing consists in an exponential decay of the polarization on a time
scale of the order of T2. For the system considered here T2 is several
tens of nanoseconds [18].
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a)

b)

c)

Fig. 2: Dependence of the peak current I on the magnetic flux
φ and the time delay τ between the pulses for different values
of the pulse strengths: a) α1 = α2 = 2, b) α1 = α2 = 5 and c)
α1 = α2 = 10.

properties. Another remarkable fact revealed by fig. 1 is
the presence of beating behaviour of the charge polar-
ization dynamics in the low excitation regime as well
as collapses and revivals of the polarization at higher
excitations signifying the important role of quantum
interferences [18].
Now we consider the current dynamics. As an example,

fig. 2 shows the dependence of the peak current on the

magnetic flux and the time delay between the two pulses
that trigger Idyn. The peak current is given in units of
I0 (e.g., for a ring with ρ0 = 1µm and N = 100 we have
I0 = 3nA). The total charge current has an oscillatory
behavior when scanning φ and τ . In particular, both the
magnitude and the sign of the peak current can be changed
by appropriately varying φ and τ . As we outlined above,
there exist regions in which the total induced current
vanishes due to cancellation of the persistent and the
dynamical components of the current. As is seen from
the figure the region where the total current is switched
off is controllable by sweeping φ, τ and/or the pulse
strengths. All of these parameters are externally tunable
and experimentally feasible with current technology.
Strictly speaking, the derived analytical formulas,

(16)-(18) and (19)-(20), are only justified for the weak
excitation regime. In the strong excitation regime the
nonlinear terms in relaxation can couple diagonal and
non-diagonal components of the density matrix, and in
this way the dynamics of the polarization and current.
However, if the relaxation is slow (and we can expect it
to be so for low temperatures) it hardly affects the results
presented in the numerical illustrations also for the strong
excitation regime (α= 5, 10).
Finally we note that the circulating current results

in an induced (orbital) magnetization (M(t)≈ πρ20I(t)).
The current temporal controllability is reflected in a
picosecond switching of the ring magnetization. The
above finding can be generalized, particularly in view
of potential applications, to the case of trains of HCPs
pulses and/or arrays of mesoscopic rings [17,18]. The first
case may serve as a sophisticated source of ultrashort
magnetic pulses while the second allows the design of
artificially microstructured materials with magnetic
properties locally controllable. In view of applying the
present scheme to nano and molecular rings [15], we note
that this regime is accessed by changing appropriately the
parameters of HCPs: The applicability of the above theory
is based on the assumption τd� tp which implies the use
of femtosecond HCP for nano-size rings. Such pulses and
even attosecond HCPs are currently under discussion [31].

Conclusions. – In summary, we showed that the time-
dependent charge polarization and charge currents can be
generated in mesoscopic rings threaded by a magnetic flux
and subjected to a sequence of asymmetric electromag-
netic pulses. The time dependence of the induced polar-
ization shows different patterns that can be controlled by
appropriately adjusting the magnetic flux and the pulse
parameters. Quantum interferences result in beatings and
revivals of the charge polarization dynamics. The total
charge current induced in the ring can be decomposed into
a static and a dynamical component. The static compo-
nent is associated with the persistent current and does
not depend on the parameters of the pulses. The dynami-
cal component is expressible analytically and can be tuned
to cancel the persistent current allowing thus a picosecond
switching of the total current in the ring.
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[12] Moskalets M. and Büttiker M., Phys. Rev. B, 66

(2002) 245321.
[13] Magarill L. I. and Chaplik A. V., JETP Lett., 70

(1999) 615.
[14] Pershin Y. V. and Piermarocchi C., Phys. Rev. B, 72

(2005) 245331.
[15] Barth I., Manz J., Shigeta Y. and Yagi K., J. Am.

Chem. Soc., 128 (2006) 7043.

[16] Räsänen E., Castro A., Werschnik J., Rubio A.
and Gross E. K. U., Phys. Rev. Lett., 98 (2007)
157404.

[17] Matos-Abiague A. and Berakdar J., Phys. Rev. Lett.,
94 (2005) 166801.

[18] Moskalenko A. S., Matos-Abiague A. and
Berakdar J., Phys. Rev. B, 74 (2006) 161303.

[19] You D., Jones R. R., Bucksbaum P. H. and Dykaar
D. R., Opt. Lett., 18 (1993) 290.

[20] Bensky T. J., Haeffler G. and Jones R. R., Phys.
Rev. Lett., 79 (1997) 2018.
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