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Abstract

We construct the theory of carriers confined in spherical Si quantum dots with finite energy barriers for electrons and holes in the framework of
Luttinger Hamiltonian for holes and taking into account the strong anisotropy of the conduction electron effective mass in Si. As a boundary
condition for the electron and hole wave functions we use continuity of the wave functions and the current at the boundary of the nanocrystals. We
apply this theory for the case of the SiO2 matrix surrounding Si quantum dots. We show that for experimentally relevant quantum dots energy
spacings between neighbouring electron and hole levels are of the order of hundreds of meV. Therefore the relaxation of excited electrons and
holes is damped.

Theoretical calculations of probabilities of various radiative transitions are presented.
© 2006 Elsevier B.V. All rights reserved.
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1. Introduction

The material composed of Si nanocrystals dispersed in SiO2

matrix is a subject of big interest in various optoelectronic
applications [1,2]. In order to understand the processes with
participation of carriers confined in the nanocrystals, one should
know their energy spectrum and wave functions. Here we
present the theoretical modeling based on the envelope function
approximation taking into account strong anisotropy of
conduction band energy spectrum and the complex structure
of the valence band in Si. The finite energy barriers at the
boundary between Si and SiO2 are accounted for using the
Bastard boundary conditions [3,4]. The advantages of our
method in comparison with ab initio methods based on the
density functional theory [5–7] are that we can calculate not
only the ground state of the confined carriers but also excited
ones. Furthermore our theory can be applied to a broad range of
nanocrystal sizes. We are not limited to nanocrystals with a
small number of atoms. The other point is that the calculation of
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various excitation and de-excitation processes involving
confined carriers using the wave functions, which we find,
remains transparent.

2. Electron and hole states

The conduction band of bulk Si has six equivalent minima in
the first Brillouin zone at points F kY0;z ¼ ð0; 0;F0:85Þkx;
F kY0;y ¼ ð0;F0:85; 0Þkx, and F kY0;x ¼ ðF0:85; 0; 0Þkx, where
kx= 2π/a and a=0.543 nm is the lattice constant of Si [8]. The
minima are situated in the neighbourhood of the six X-points
(there are three non-equivalent X-points). The conduction band
is doubly degenerate at each of the X-points, which is a con-
sequence of the fact that Si lattice has two atoms in the
elementary unit cell and the origin can be chosen at the center of
any of them. Assuming the Bloch amplitudes not changing in
the neighbourhood of X-point one can write the wave function
of one of six equivalent ground states of electrons in the nano-
crystal as

we
m ¼ neð rYÞucmei k

Y
0m r

Y ðm ¼ Fx;Fy;FzÞ; ð1Þ
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Fig. 1. Dependence of the energy levels of electrons and holes on the nanocrystal
diameter. The value of the magnetic quantum number m for electrons and the
wave function symmetry for holes are shown near the corresponding lines.

Fig. 2. Electron wave functions in dependence on the cylindrical coordinates z
and ρ for the five lowest electron levels of a nanocrystal with diameter of 2 nm.
The wave function ξe4 of the fourth level with magnetic number m=±1 has also
an angular dependence eimϕ.
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where ucν is one of two Bloch amplitudes of bulk electron at
X-point in the Brillouin zone, which corresponds to the lower
conduction band at the kY0m point.

Let us consider an electron in the valley having minimum
at k0z. Its envelope wave function ξe inside the nanocrystal
satisfies Schrödinger equation for a free electron with aniso-
tropic effective mass: mz=m|| =0.916m0, mx=my=m⊥=0.19m0

with m0 being the electron mass in vacuum. For description
of electrons in SiO2 (outside the nc) we assume a simple
isotropic band with effective mass equal to m0. The barrier
energy Ue=3.2 eV is used for boundary Si/SiO2 [9]. We use
Bastard type boundary conditions implying that the envelope
wave function ξ and the velocity density n* tŶn are continuous
across the boundary [3,4].

We have calculated the electron energy levels and the corres-
ponding envelope wave functions numerically. The dependence
of the energy levels on the nc size is depicted in Fig. 1. The
dependence of the electron envelope wave functions on the
distance from the nanocrystal centrum is shown in Fig. 2 for
d=2 nm (such a small diameter is chosen for demonstration in
order to resolve better the tunnelling tails of the envelope wave
functions).

For description of the valence band states in Si we use
generalization of the Luttinger Hamiltonian [10,11] in the limit of
vanishing spin-orbit coupling, which is justified for Si. Holes
wave functions can be found as eigenfunctions ψFM of the square
F̂ 2 of the full angular momentum operator FŶ¼ LŶþ JŶðLŶ¼
−i rY �ArYÞ and its projection F̂z onto the axis z. The operator of
“internal hole spin” JŶ is operator acting on the Bloch amplitudes.
In our approximation J=1. In order to find hole states with the
lowest quantization energies it is sufficient to look at states with
F=0 and F=1. It is convenient to choose basis of the Bloch
amplitudes space in the form of spherical components [12] u0 ¼
Z; uF ¼ b

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1=2ðXFiY Þp

of the corresponding functions X=yz,
Y=xz, and Z=xy, of the representation Γ25′.

For F=0 there is one type of hole states with the envelope
wave function

wP
00ðr; h;uÞ ¼ RP

0 ðrÞ
X

m1;m2

C00
1m11m2

Y1m1ðh;uÞum2 ; ð2Þ
where R0
P (r) is the radial part of the envelope wave function,

Ynm(θ,ϕ) are spherical harmonics, and C jm
j1m1j2m2

are Clebsh–
Gordon coefficients [12].

For F=1 there are two types of hole states determined by the
envelope wave functions ψ1M

SD and ψ1M
P , which are degenerate in

M=−1, 0, 1:

wSD
1M ðr; h;uÞ ¼ RS

1ðrÞY00ðh;uÞuM
þ RD

1 ðrÞ
X

m1;m2

C1M
2m11m2

Y2m1ðh;uÞum2 ; ð3Þ

wP
1M ðr; h;uÞ ¼ RP

1 ðrÞ
X

m1;m2

C1M
1m11m2

Y1m1ðh;uÞum2 : ð4Þ

The form of envelope wave functions given by Eqs. (2), (3),
and (4), is well-known and was used in the past for description
of impurity states in semiconductors [13].

In case of holes the rigorous formulation of the boundary
conditions for the boundary between Si and SiO2 in the
framework of the envelope function method is not a trivial task
and generally has to be investigated in comparison with
experiment and numerical methods. In this paper we take into
account that the main contribution to the valence band states is
usually given by p-orbitals and the corresponding effective



Fig. 3. Square root of the radial hole density in dependence on the distance from
the nanocrystal centrum for five lowest hole with levels F=0, 1 of a nanocrystal
with diameter of 2 nm.
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mass is pretty large. Therefore, for description of hole states
outside the Si nanocrystal we use the same Luttinger Hamil-
tonian but with parameters corresponding to an isotropic
effective mass being equal to 5m0. In such a case the wave
functions of holes are similar to (2), (3), and (4), and one can
formulate Bastard type boundary conditions for the relation of
hole wave functions inside and outside the nanocrystal. The
barrier energy Uh=4.3 eV has been used for holes [9].

The calculated dependence of hole energy levels on the
nanocrystal radius and their types are presented in Fig. 1 together
with the electron levels. The dependence of the square root of the
radial hole density on the distance from the nc centrum is shown
in Fig. 3 for d=2 nm and several lowest hole levels with F=0, 1.

3. Excitonic shift

The Coulomb interaction leads to the decrease of the
ground state energy of an electron–hole pair. In order to
calculate this energy correction we take into account that for
the ground states and low excited states electrons and holes are
to the high extent localized inside the nc. Only a small part of
the carrier probability density penetrate outside the nc even in
the case of small nc's with d∼2 nm. We estimate energy
Fig. 4. Dependence of the exciton ground state energy as a function of diameter
of nanocrystal (solid line). Dashed line shows the same energy without exciton
shift taken into account. Dotted line represents ground exciton energy for
infinitely high energy barriers. For comparison, the experimental data obtained
from photoluminescence spectra [14–19] are presented.
correction due to Coulomb interaction of confined carriers
using the wave functions of infinite barrier dot. The effect of
the increase of the effective distance between the electron and
hole due to the probability density tails penetrating outside the
nanocrystal is in counteraction to the decrease of the effective
dielectric constant. In the case of the electron and hole being at
the lowest quantization levels the energy correction is [11]:
VC
e1,h1 =−1.54e2/(κSiRnc), where κSi is the dielectric constant of

Si and it has been taken into account that the surrounding
material has an approximately three times smaller dielectric
constant than Si. For carriers in excited states the numerical
factor changes: for example, it equals to 1.17 (when the
electron is in the first state and the hole is in the second), to
1.29 (when the electron is in the second state and the hole is in
the first), and to 1.01 (when both the electron and the hole are
in the second states).

The dependence of the exciton ground state energy on the
size of nanocrystal is presented in Fig. 4. For comparison, the
experimental data obtained from photoluminescence spectra
[14–19] are shown too.

4. Radiative transitions

We have produced the calculation of the probabilities Pr of
radiative recombination assisted by emission of an optical
transverse phonon (with energy 57.5 meV) as well as longi-
tudinal one (55.3 meV). These channels of radiative transitions
dominate in bulk Si. The calculations have been produced for
electron–hole pairs localized in various space quantized states.
The results of calculations for the ground exciton state (Pr,gr) are
presented in Fig. 5. The probabilities of radiative transitions
involving excited states Pr have similar dependences on
nanocrystal size being of the same order of magnitude (e.g.
for transition from the second electron state to the first hole state
Pr=0.8Pr,gr). In Fig. 5 the result of calculations of direct (zero-
phonon) radiative transition for the ground exciton state is
presented as well. Such transition becomes possible for
Fig. 5. Calculated probabilities Pr,gr of radiative transitions between ground
electron and hole states: assisted by emission of a TO-phonon (dashed line), an
LO-phonon (dash–dot line) and their sum (thick solid line) as well as probability
of direct (zero-phonon) transition (dot line), as functions of nanocrystal
diameter. Experimental points [20] are shown as well.
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confined carriers but one can see that the oscillator strength is
noticeably less for the dots with diameter larger than 2 nm.

5. Conclusions

We have constructed the theory of confined carriers in Si
quantum dots in SiO2 matrix. We have calculated the energy
levels as functions of the dot diameter and found that the energy
spacings between neighbouring electron and hole levels are of
the order of hundreds of meV for experimentally relevant
quantum dots. Therefore the energy relaxation of excited elec-
trons and holes is damped as well as Auger processes because
they should be assisted by multiphonon processes. It is rea-
sonable to suppose that the wide spectrum band observed in
photoluminescence is originated by radiative transitions of
“hot” carriers, i.e. carriers in excited states.
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