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We calculate the ground and excited electron and hole levels in spherical Si quantum dots inside SiO2 in a
multiband effective mass approximation. The Luttinger Hamiltonian is used for holes, and the strong aniso-
tropy of the conduction electron effective mass in Si is taken into account. As the boundary conditions for the
electron and hole wave functions, we use the continuity of the wave functions and the flux at the boundaries of
the quantum dots.
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I. INTRODUCTION

The study of materials composed of Si nanocrystals dis-
persed in a SiO2 matrix is an issue of high importance for
various optoelectronic applications.1,2 In particular, the
knowledge of the energy spectrum of carriers confined in the
nanocrystals and their wave functions is crucial for the un-
derstanding of electronic processes. Numerous theoretical
works have dealt with the evaluation of the ground-state
electron-hole pair energy of Si nanocrystals.3–8 On the other
hand, the problem concerning the energy-level positions and
the corresponding eigenfunctions of the excited carrier states
is studied much less.9,10 However, shortly after the genera-
tion of an electron-hole pair in a nanocrystal, a number of
important nonequilibrium processes involving these “hot”
carriers may take place,11 thus necessitating the knowledge
of the excited states.

This current paper is devoted to the study of the ground
and excited states of the electrons and holes within the
framework of a multiband effective mass approximation. The
finite energy barriers at the Si/SiO2 boundary are explicitly
accounted for. For the description of the electron and hole
states of the carriers confined in Si nanocrystals, we utilize
the envelope function approximation, taking into account the
elliptic symmetry of the bottom of the conduction band and
the complex structure of the top of the valence band in Si.
The finite energy barriers at the boundary between Si and
SiO2 are treated by employing the Bastard boundary
conditions.12,13 This is the main difference between our
method and earlier calculations based on the effective mass
approximation9 which failed to properly describe the optical
properties of small nanocrystals. An advantage of our
method in comparison with ab initio methods based on the
density functional theory5,8 is that, without a considerable
numerical effort, we can calculate not only the ground state
but also the excited states of the confined carriers. Further-
more, our theory is suitable for a broad range of nanocrystal
sizes. We are not limited to nanocrystals with a small number
of atoms.49 Another point is that using the derived wave
functions, the calculations of various excitation and deexci-
tation processes involving the confined carriers are transpar-
ent and allow for an insight into the underlying physics.

II. ELECTRON STATES

The conduction band of bulk Si has six equivalent min-
ima in the first Brillouin zone at the points ±k�0,z

= �0,0 , ±0.85�kX, ±k�0,y = �0, ±0.85,0�kX, and ±k�0,x

= �±0.85,0 ,0�kX, where kX=2� /a and a=0.543 nm is the
lattice constant of Si.14 The minima are situated in the neigh-
borhood of the six X points �there are three nonequivalent X
points�. Assuming that the Bloch amplitudes are not chang-
ing in the neighborhood of the X point, one can write the
wave function of one of the six equivalent ground states of
electrons in the nanocrystal as

��
e = �e�r��uc�eik�0,�r� �� = ± x, ± y, ± z� . �1�

uc� is one of two Bloch amplitudes of the bulk electron at the
X point in the Brillouin zone, which corresponds to the lower
conduction band at the k�0,� point. The envelope wave func-
tion �e in Eq. �1� inside the Si quantum dot satisfies the
following equation:

�2

2m�

�2

�z2�e�x,y,z� +
�2

2m�

� �2

�x2 +
�2

�y2��e�x,y,z� + E�e�x,y,z�

= 0, �2�

where m� =0.916m0 and m�=0.19m0, with m0 being the free
electron mass. The rigorous formulation of the boundary
conditions for the boundary between Si and SiO2, in the
framework of the envelope function method, is not a trivial
task and generally has to be investigated in conjunction with
experiment and numerical methods. The Bastard type bound-

ary conditions imply that � and v�̂� are continuous across the

boundary, where v�̂ = 1
i� �r� , Ĥ� is the velocity operator, � is the

envelope wave function, and Ĥ is the corresponding
Hamiltonian.12,13 Here, we assume that the spectrum of elec-
tronic states outside the nanocrystal in SiO2 is isotropic and
determined by a single electron effective mass which is equal
to the free electron mass m0. Then, outside the quantum dot,
we have
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�2

2m0
� �2

�x2 +
�2

�y2 +
�2

�z2��e�x,y,z� + �E − Ue��e�x,y,z� = 0,

�3�

where Ue is the energy barrier for electrons. According to
Refs. 15 and 16, we have Ue=3.2 eV. The boundary condi-
tions result in the following equations:

��e�r=Rnc
− = ��e�r=Rnc

+ , �4�

	 1

m�

�

Rnc

��e

��
+

1

m�

z

Rnc

��e

�z



r=Rnc
−

= � 1

m0

��e

�r
�

r=Rnc
+

, �5�

which are most conveniently written using the cylindrical
coordinates � and z. Here, Rnc is the nanocrystal �nc� radius.

Equations �2� and �3� with the boundary conditions �4�
and �5� have been solved numerically after separating the
trivial angular part 1

�2�
exp�im�� �m=0, ±1, ±2, . . . � of the

wave functions. A finite element numerical solver of the
commercial package FLEXPDE was used for the numerical

solution. Hence we obtain the electron energy levels and the
corresponding envelope wave functions. The dependence of
positions of the several lowest energy levels on the quantum
dot diameter is depicted in Fig. 1. The dependence of the
electron envelope wave functions on the distance from the
center of the quantum dot is shown in Fig. 2 for d=2 nm
�such a small diameter is chosen for demonstration reasons
in order to resolve better the tunneling tails of the envelope
wave functions�. We have also compared the positions of the
electron levels and their degeneracies with the existing data
of Ref. 9, calculated by the empirical tight-binding method
for quantum dots with diameter d=7.61 nm. We have found
that apart from small level splittings due to the valley-orbit
interaction neglected in our model, we get the same sequence
of levels. The levels are, however, shifted toward the lower
energies. The reason why we have smaller energies is that
this tight-binding model used a truncation of Si nanocrystals
by H atoms. This procedure is known to give higher energies
and greatly overestimate the optical band gap when com-
pared with experiments on Si/SiO2 nanocrystals and recent
ab initio time-dependent density functional theory
calculations8,17 as well as with our model.

III. HOLE STATES

For the description of the valence band structure in Si, we
use a generalization of the Luttinger Hamiltonian19 in the
limit of vanishing spin-orbit coupling, which is justified for

Si. That is, we write the Hamiltonian Ĥ in the form

Ĥ = �A + 2B�p̂2 − 3B�p�̂ · J�̂�2, �6�

where p�̂ is the momentum operator and J�̂ is the unitary an-
gular momentum operator acting in the space of Bloch am-
plitudes. Furthermore, we introduced

A = −
1

4

mh + ml

mhml
, B = −

1

4

mh − ml

mhml
, �7�

FIG. 1. �Color online� Dependence of positions of the electron
energy levels above the bottom of the conduction band of bulk Si
on the quantum dot diameter. The numbers near the lines indicate
the total degeneracy �including the spin degeneracy� of the corre-
sponding levels.

FIG. 2. �Color online� Electron wave function dependence on the cylindrical coordinates �a� z and �b� � for the lowest five electron levels
of a quantum dot with diameter of 2 nm. The wave function �4

e of the fourth level with magnetic number m= ±1 has also an angular
dependence eim�.
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mh =
m0

	1 − 2	
, ml =

m0

	1 + 2	
, 	 =

1

5
�3	3 + 2	2� . �8�

Values of the constants 	1, 	2, and 	3 for Si are 4.22, 0.53,
and 1.38, respectively.14 The basis of the Bloch amplitude
space can be chosen in the form of spherical components20

u0=Z, u±= 
�1/2�X± iY� of the corresponding functions X
=yz, Y =xz, and Z=xy of the representation �25�.

12,18

In bulk Si, this model leads to two types of states corre-
sponding to a doubly degenerate �in the absence of spin-
dependent interactions� heavy hole band having mass mh and
a nondegenerate light hole band having mass 2mhml / �3mh

−ml�. The quantum confinement gives rise to mixing of the
states. Eigenfunctions of the Hamiltonian �6� can be found as

eigenfunctions �FM of the square F̂2 of the full angular mo-

mentum operator F�̂ =L�̂ +J�̂ �L�̂ =−ir���r�; L�̂ acts only on the

envelope part of the wave function� and its projection F̂z

onto the axis z.21 Eigenvalues of F̂2 and F̂z are F�F+1� and
M, respectively, where F=0,1 ,2 , . . ., and M can be any in-
teger number having an absolute value no larger than F. For
a spherical quantum dot, there are three types of states,
namely,

�FM
F−1,F+1�r,,�� = RF

F−1�r�YFM
F−1�,�� + RF

F+1�r�YFM
F+1�,�� ,

�9�

�FM
F �r,,�� = RF

F�r�YFM
F �,�� , �10�

�00
1 �r,,�� = R0

1�r�Y00
1 �,�� , �11�

where RF
F−1�r�, RF

F+1�r�, and RF
F�r� are the radial parts of the

envelope wave functions. Furthermore,

YFM
L �,�� = 

m1,m2

CLm11m2

FM YLm1
�,��um2

�12�

are the vector spherical harmonics that can be expressed in
terms of the usual spherical harmonics Ynm� ,�� and the
Clebsh-Gordon coefficients Cj1m1j2m2

jm .22 For the first two
types of functions �9� and �10�, only solutions with F�1 are
possible. We will see that the function �9� is of a mixed type,
whereas functions �10� and �11� are of heavy and light hole
types, respectively.

For a formulation of the boundary conditions for the hole
states, we take into account that the main contribution to the
valence band states in SiO2 is given by p orbitals,23 and for
the description of the hole states outside the Si nanocrystal,
we can use the same form of the Luttinger Hamiltonian �6�.
It is known that the hole masses at the valence band maxi-
mum in SiO2 are pretty large.23 For simplicity, we choose
them to be equal to mv=5m0. Then the corresponding values
of the coefficients A0 and B0 of the Luttinger Hamiltonian �6�
are A0=− 1

2mv
and B0=0. In such a case, we can formulate

appropriate Bastard type boundary conditions.

Inserting the functions �FM
F−1,F+1 given by Eq. �9� into the

Schrödinger equation with the Hamiltonian �6�, we get the
following equation system �see also Ref. 21� for the radial
functions RF

F−1�r� and RF
F+1�r� inside the nanocrystal

�r�Rnc�:

�1 +
F − 1

2F + 1
��	 d2

dr2 +
2

r

d

dr
−

�F − 1�F
r2 
RF

F−1�r�

−
3�F�F + 1�

2F + 1
�	 d2

dr2 +
2F + 3

r

d

dr
+

F�F + 2�
r2 
RF

F+1�r�

= −
E

A�2RF
F−1�r� , �13�

−
3�F�F + 1�

2F + 1
�	 d2

dr2 −
2F − 1

r

d

dr
+

�F − 1��F + 1�
r2 
RF

F−1�r�

+ �1 +
F + 2

2F + 1
��	 d2

dr2 +
2

r

d

dr
−

�F + 1��F + 2�
r2 
RF

F+1�r�

= −
E

A�2RF
F+1�r� , �14�

where E denotes the hole energy and �=B /A. The general
solution of the system of equations given by Eqs. �13� and
�14�, which does not diverge at r=0, is found as

RF
F−1�r� = CjF−1��r/Rnc� + DjF−1���r/Rnc� , �15�

RF
F+1�r� = −� F

F + 1
CjF+1��r/Rnc�

+�F + 1

F
DjF+1���r/Rnc� , �16�

where C and D are coefficients to be found from the bound-
ary and normalization conditions, jl�z� are the spherical
Bessel functions of the first kind,24 and

� =� 1 − �

1 + 2�
. �17�

The energy E, which is negative, is connected with the posi-
tive variable � via

E =
A�2

Rnc
2 �1 − ���2 = −

�2

2mhRnc
2 �2. �18�

Outside of the nanocrystal �r�Rnc�, the radial parts of the
functions �FM

F−1,F+1 satisfy the following equations:

A0�2	 d2

dr2 +
2

r

d

dr
−

�F − 1�F
r2 
RF

F−1�r� = − �E + Uh�RF
F−1�r� ,

�19�

A0�2	 d2

dr2 +
2

r

d

dr
−

�F + 1��F + 2�
r2 
RF

F+1�r�

= − �E + Uh�RF
F+1�r� , �20�
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where Uh is the energy barrier for holes at the Si/SiO2
boundary. Here, we take Uh=4.3 eV.15,16 The general solu-
tion of the system of equations given by Eqs. �19� and �20�,
which converges to zero for large distances from the nano-
crystal, is found as

RF
F−1�r� = �C0 + D0�kF−1��r/Rnc� , �21�

RF
F+1�r� = �−� F

F + 1
C0 +�F + 1

F
D0�kF+1� �r

Rnc
� ,

�22�

where

� =
�2mv�E + Uh�Rnc

�
. �23�

C0 and D0 are again coefficients to be found from the bound-
ary and normalization conditions, and kl�z� are the modified
spherical Bessel functions of the third kind.24 The boundary
conditions lead to the following equations for the radial func-
tions:

RF
F−1��r��r=Rnc

− = RF
F−1��r��r=Rnc

+ , �24�

RF
F+1��r��r=Rnc

− = RF
F+1��r��r=Rnc

+ , �25�

�	�A +
F − 1

2F + 1
B� d

dr
+

3

2

F − 1

2F + 1

B

r

RF

F−1�r�

−
3�F�F + 1�

2F + 1
B� d

dr
+

F + 2

r
�RF

F+1�r��
r=Rnc

−

= A0� d

dr
RF

F−1�r��
r=Rnc

+
, �26�

	−
3�F�F + 1�

2F + 1
B� d

dr
−

F − 1

r
�RF

F−1�r�

+ 	�A +
F + 2

2F + 1
B� d

dr
+

3

2

F + 2

2F + 1

B

r

RF

F+1�r�

r=Rnc

−

= A0� d

dr
RF

F+1�r��
r=Rnc

+
. �27�

Using the functions �15�, �16�, �21�, and �22�, in Eqs.
�24�–�27� leads to a solvability condition determining the
energy eigenvalues for states �FM

F−1,F+1. We have derived this
condition �see the Appendix�. From it we have found nu-
merically the energy eigenvalue dependence on the nano-
crystal radius Rnc. The corresponding coefficients C, D, C0,
and D0, assuring the normalization condition, have also been
derived numerically.

For the radial function RF
F�r� of the states �FM

F , we get the
following equation inside the Si quantum dot:

�1 − ��	 d2

dr2 +
2

r

d

dr
−

F�F + 1�
r2 
RF

F�r� = −
E

A�2RF
F�r� .

�28�

One can easily see that it is the same equation as for the
radial part of the wave function of a particle having a simple
parabolic band with a heavy hole mass and angular momen-
tum F. For the radial function R0

1�r� of the states �00
1 , we get

�1 + 2��	 d2

dr2 +
2

r

d

dr
−

2

r2
R0
1�r� = −

E

A�2R0
1�r� . �29�

This equation is then the same as for a simple particle having
a light hole mass and angular momentum 1. Solving Eqs.
�28� and �29�, we find

RF
F�r� = C�jF��r/Rnc� , �30�

R0
1�r� = C�j1���r/Rnc� , �31�

for r�Rnc, where C� and C� are the corresponding normal-
ization coefficients. Outside the nanocrystal, RF

F�r� satisfies
the equation

A0�2	 d2

dr2 +
2

r

d

dr
−

F�F + 1�
r2 
RF

F�r� = − �E + Uh�RF
F�r� ,

�32�

and R0
1�r� satisfies the equation

A0�2	 d2

dr2 +
2

r

d

dr
−

2

r2
R0
1�r� = − �E + Uh�R0

1�r� . �33�

Solutions which have an appropriate behavior at infinity are

RF
F�r� = C0�kF��r/Rnc� , �34�

R0
1�r� = C0�k1��r/Rnc� . �35�

The boundary conditions in this case are found as

RF
F��r��r=Rnc

− = RF
F��r��r=Rnc

+ , �36�

�	�A − B�
d

dr
−

3

2

B

r

RF

F�r��
r=Rnc

−
= A0� d

dr
RF

F�r��
r=Rnc

+
,

�37�

for RF
F�r� functions, and

R0
1��r��r=Rnc

− = R0
1��r��r=Rnc

+ , �38�

�	�A + 2B�
d

dr
+

3B

r

R0

1�r��
r=Rnc

−
= A0� d

dr
R0

1�r��
r=Rnc

+
,

�39�

for R0
1�r� functions. Using the form of the radial wave func-

tions given by Eqs. �30� and �34� �Eqs. �31� and �35�� in Eqs.
�36� and �37� �Eqs. �38� and �39��, we get the equation de-
termining the energy levels of states �FM

F ��00
1 � �see the Ap-

pendix�. Solving this equation numerically, we found the

MOSKALENKO et al. PHYSICAL REVIEW B 76, 085427 �2007�

085427-4



energy-level positions of holes of the heavy and light hole
types.

The dependence of positions of the hole energy levels on
the nanocrystal radius, their types, and degeneracies are pre-
sented in Fig. 3 for the lowest few hole levels. One can see
that the hole level structure is denser in comparison with the
electron level structure. This can lead to important differ-
ences in behavior between hot electrons and holes.25

IV. COULOMB SHIFT

The Coulomb interaction leads to a decrease in the recom-
bination energy of an electron-hole pair.26 This interaction
should be considered while taking into account the “image
charge” effects appearing because of the dielectric constant
difference at the quantum dot boundary. On the other side,
the dielectric constant mismatch leads to the interaction of a
charged particle with its own image. The resulting polariza-
tion self-energy correction increases single-particle energies
of electrons and holes �counted upward from the bottom of
the bulk conduction band and downward from the top of the
valence band, respectively�. If the dielectric constant changes
discontinuously at the quantum dot boundary, the polariza-
tion self-interaction diverges there. This is not an immediate
problem for models of quantum dots assuming infinite en-
ergy barriers for electrons and holes at the quantum dot
boundary, because particle wave functions vanish there and
the self-energy correction induced by the self-interaction re-
mains finite.27–29 However, as a consequence of the finite
energy barriers, the particle wave functions are finite at the
quantum dot boundary �see Fig. 2� and self-energy correc-
tions become infinite.

In order to remove these unphysical divergences, one has
to take into account that the position-dependent dielectric
constant should change smoothly between the values corre-
sponding to the quantum dot core and the surrounding mate-
rial on the scale of the interatomic distance. This can be done

in a simple and an intuitive way by “regularizing” directly
the self-interaction.30,31 A more physical and controllable,
though also more demanding, way is to solve the inhomoge-
neous problem with the smooth position-dependent dielectric
constant.32 Calculations of Ref. 32 show that the total cor-
rection to the electron-hole pair energy introduced by the
Coulomb and image charge interactions depends strongly on
the width of the transition region between two values of the
dielectric constant. For reasonable values of the transition
region width around the interatomic distance, the corrections
introduced by the electron-hole Coulomb interaction and the
polarization self-energy corrections cancel each other to a
large extent. Therefore, the overall Coulomb correction to
the energy of the electron-hole pair is small, and electron-
hole recombination energy is pretty accurately given by the
sum of the band gap with the electron and hole single-
particle quantization energies. This conclusion is also sup-
ported by ab initio and tight-binding calculations for small
hydrogen-terminated silicon nanocrystals.33 The excitonic ef-
fects may be more significant for small nanocrystals with
diameters smaller than 2 nm.34,35

An estimate �rather an upper limit estimate32� of the over-
all Coulomb shift VC can be deduced using single-particle
wave functions corresponding to infinitely high energy bar-
riers. We have calculated VC under these assumptions, treat-
ing the Coulomb correction as a perturbation to the single-
particle Hamiltonian.29,36 The result for the ground-state
electron and hole can be given then in a simple form: VC=
−1.54e2 / ��SiRnc�, where �Si is the dielectric constant of Si
and it was taken into account that the surrounding material
has a dielectric constant approximately three times smaller
than Si �one should notice that Ref. 29 gives a different
numerical constant computed incorrectly by us�. The exci-
tonic shift calculated in the same way for higher states of
electrons and holes is of the same order and smaller.

In Fig. 4, the dependence of the exciton energy as a func-
tion of the nanocrystal diameter is presented for the ground
state. This dependence is also shown when the excitonic en-
ergy shift is accounted for. The theory is compared with the
experimental data obtained from the photoluminescence
spectra.37–40 We should remark that by calculating the carrier

FIG. 3. �Color online� Dependence of the positions of the hole
energy levels below the top of the valence band of bulk Si on the
quantum dot diameter. The numbers near the lines indicate the total
degeneracy �including the spin degeneracy� of the corresponding
levels. The types of the levels and values of the total angular mo-
mentum F are also shown.

FIG. 4. �Color online� Dependence of the ground-state electron-
hole recombination energy as a function of diameter of nanocrystal
�solid line�. The dashed line shows the same energy without taking
into account the exciton shift. For comparison, the experimental
data obtained from photoluminescence spectra �Refs. 37–40�, mea-
sured for Si nanocrystals inside SiO2, are presented.
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levels and the ground-state exciton energy, the strain effects
induced by the boundary between Si and SiO2 were ne-
glected. These effects may become important for small
nanocrystals.17,41

V. RADIATIVE RECOMBINATION

We have calculated the probabilities Pr of radiative re-
combination assisted by emission of an optical transverse
phonon �with energy 57.5 meV� as well as a longitudinal one
�55.3 meV�. These channels of radiative transitions dominate
in bulk Si.

The probability of a spontaneous radiative transition of an
electron from the initial state i �electron state�, with energy
Ei, to the final state f �hole state�, with energy Ef, assisted by
emission of a phonon with frequency �0 can be found using
second order perturbation theory. In the framework of this
theory, the process goes via a virtual state j having energy Ej.
Then the probability of emitting a photon with frequency
�= �Ei−Ef� /�−�0 into the angle d� per time unit is given
by

Pr
fid� = � e

m0c
�2 �neff

2�c�

1

6
�

1

MF

M


q�

�TM�
fi �2d� , �40�

where

TM�
fi = 

j

�M, f �Ĥeph�j��j�e�Q� p�̂ ��,i�

Ei − Ej
. �41�

Here, p�̂ is the momentum operator, Ĥeph is the electron-
phonon interaction Hamiltonian, e�Q� is the light polarization

vector perpendicular to the light propagation direction Q� , and
c is the speed of light in vacuum. The effective refraction
index neff for radiative recombination of carriers confined in
Si nanocrystals embedded in some media with a dielectric
constant �m is given by42

neff = � �m

�eff
�2

�m
1/2, �42�

where �eff= ��Si+2�m� /3. We have also taken into account
the degeneracy, MF=2F+1, of the hole state �we can neglect
the spin degeneracy� and degeneracy, 6, of the electron state
�we do not consider electron states having an azimuthal
quantum number different from zero and also neglect the
spin degeneracy�.

In silicon, only the holes interact with optical phonons
due to deformation potentials. Thus the transition goes via a
virtual state belonging to the valence band. The energy dis-
tance between the conduction and valence bands at the point
k� =k�0,� in the Brillouin zone is equal to 4.3 eV, which makes
it possible to use the approximation Ei−Ej ��i=4.3 eV and
to simplify Eq. �41�. Then, after integrating over d� and
taking into account two possible polarizations of emitted
light, Eq. �40� takes the form

Pr
fi =

8�

3

1

�i
2� e

mc
�2 �neff

2�c�

�
1

6
�

1

MF

M


�=x,y,z

��M, f �Ĥephp̂���,i��2. �43�

The Hamiltonian of the hole interaction with optical
phonons, in the case when the spin-orbit interaction is ne-
glected, is given by12,43

Ĥeph =
2
�3

d0

a
�vx�Ĵy, Ĵz� + vy�Ĵz, Ĵx� + vz�Ĵx, Ĵy�� , �44�

where d0 is the optical-phonon deformation potential. We

used d0=27 eV for Si.44,45 �Ĵi , Ĵj�= ĴiĴ j + ĴjĴi is the anticom-

mutator of projections of the operator J�̂ introduced in Sec.
III, and the field of the relative atomic displacement 2v� is
given by

v� =� �

2��0V

q� ,�

e�q� ,��âq� ,�eiq�r� + âq� ,�
† e−iq�r�� . �45�

Here, âq� ,�
† and âq� ,� are creation and annihilation operators of

a phonon having wave vector q� and polarization �, �0 is the
optical-phonon frequency, � is the mass density, and V is the
normalization volume. We have neglected the small differ-
ence in the frequency of LO and TO phonons.

Let us consider only the z valley for the electron initial
state ��=z�, taking into account that the others give the same
contribution. Then one can use for the phonon polarization
that q� �k�0,z, i.e., the vector q� is along the z axis. So, trans-
versal phonon polarizations e�TO1 and e�TO2 can be chosen to
be directed along the x and y axes �e�TO1=e�x, e�TO1=e�y�, while
the longitudinal e�LO one is directed along the z axis �e�LO

=e�z�. The temperature is assumed to be low enough �kT
���0� to neglect absorption of phonons. Then for a given

phonon polarization e��, the whole Ĥeph can be replaced with

2
�3

d0

a
� �

2��0V
ĴL

q�
e−iq�r�, �46�

where

ĴL = e�,x�Ĵy, Ĵz� + e�,y�Ĵz, Ĵx� + e�,z�Ĵx, Ĵy� . �47�

We see that the first two terms on the right hand side give
contributions from TO phonons and the last term gives con-
tribution from LO phonons.

Using Eq. �46� in Eq. �43� and taking into account that the
electron and hole envelope functions vary in space more
slowly than the corresponding Bloch amplitudes, we come to
the following result:

Pr
fi =

8

9

d0
2e2�neff

a2m0
2c3��0�i

2

1

MF

M


�=x,y,z

M�,z
M , �48�

where
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M�,z
M = 

m1,m2,m,m�

�um1
�ĴL�um��um�p̂��ucz�

��um2
�ĴL�um��

*�um��p̂��ucz�*

�� d3r��i
e�r���2�m1

M*�r���m2

M �r�� . �49�

Here, �i
e�r�� is the electron envelope function in the initial

state, and for brevity of notation, the total hole wave function
in the final state is written as �FM

h,f �r��=m�m
M�r��um �cf. Eqs.

�9�–�12��. Calculating matrix elements �49�, one should take
into account that only the nonzero matrix elements of the
momentum operator projections are

�u±�p̂y�ucz� = ± �u±�p̂x�ucz� =
1
�2

pcv, �50�

and pcv was calculated in Ref. 18.
The results of calculations for the ground exciton state

�Pr,gr� are presented in Fig. 5. The probabilities of radiative
transitions involving excited states Pr have similar depen-
dences on the nanocrystal size, being of the same order of
magnitude �e.g., for the transition from the second electron
state to the first hole state, Pr�0.8Pr,gr�. In Fig. 5, the result
of calculations of direct �zero phonon� radiative transition for
the ground exciton state is presented as well. The probability
of the direct optical transition was calculated using the first
order perturbation theory, leading to

Pr,dir
fi =

4

3

e2�neff

m0
2c3�

1

MF

M

�pex
M �2, �51�

where the matrix element pex
M is given by

pex
M = 

m

�um�p�̂ �ucz� � d3r�i
e�r���m

M*�r��eik0z. �52�

Such a transition becomes possible for confined carriers, but
one can see that for quantum dots with a diameter larger than

2 nm, the corresponding oscillator strength is noticeably
smaller than in the case of transitions assisted by emission of
an optical phonon. This is a well-known experimental fact.46

One should notice that the shown probability of the direct
radiative transition has been calculated as an average value
over the nanocrystal size distribution �±0.15 nm here� in or-
der to achieve an acceptable convergence of the numerical
integration and to avoid strong oscillations of the result.47,48

One can see from Fig. 5 that our results reproduce the ex-
perimental data on radiative lifetimes in Si/SiO2
nanocrystals40 very well. As far as radiative transitions most
probably take place together with a phonon emission, the
exciton band gap derived from the photoluminescence spec-
tra should generally be lower than the calculated one by the
amount of the phonon energy �cf. Fig. 4�.

VI. CONCLUSION

We have calculated the wave functions and the energy
levels of confined carriers in Si quantum dots inside a SiO2
matrix as functions of the dot diameter. It has been shown
that for small quantum dots �d�2.5 nm�, the energy spacing
between neighboring electron and hole levels is of the order
of hundreds of meV, and for electrons they are larger than
those for holes. Such energy spacings are also larger than the
energy-level splittings due to different mechanisms9 which
are not accounted for in this paper. Therefore, the single-
phonon relaxation between the levels becomes impossible
and the time of relaxation of hot carriers to the ground state
increases. The calculated recombination energies of an
electron-hole pair in the ground state and the probabilities of
radiative interband transitions between the ground electron
and hole levels are in good agreement with experimental
data. Comparison of the electron and hole levels calculated
by our method and by state-of-the-art computational
methods8,17 could lead, in the future, to a more rigorous for-
mulation of the boundary conditions in the framework of the
multiband effective mass approximation. This would allow
us to produce quantitative calculations of processes involv-
ing electrons and holes in Si nanocrystals with a reasonable
computational effort.
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APPENDIX: EQUATIONS FOR QUANTIZATION
ENERGIES OF HOLES

The equations determining the energy quantization levels
in the cases of mixed, heavy, and light hole types are

FIG. 5. �Color online� Probabilities Pr,gr of radiative transitions
between the ground electron and hole states assisted by emission of
a TO phonon �dashed line�, an LO phonon �dash-dot line�, and their
sum �thick solid line� as well as the probability of direct �zero
phonon� transition �dot line�, as functions of nanocrystal diameter.
Experimental points �Ref. 40� are shown as well.
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���	 F − 1
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kF−1���
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 jF−1��� + �1 +

F − 1
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 +
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����	 F + 1
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jF���� −
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2F + 3
jF+2����
�

= ���	 F − 1

2F − 1

kF−2���
kF−1���

+
F

2F − 1

kF���
kF−1���
 jF−1���� + �1 +

F − 1

2F + 1
����	 F − 1

2F − 1
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2F − 1
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3�F + 1�
2F + 1

��	 F − 1

2F − 1
jF−2��� −
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 − �1 +

F + 2

2F + 1
���	 F + 1
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jF��� −

F + 2

2F + 3
jF+2���
� , �A1�

�1 − ���	 F

2F + 1
jF−1��� −

F + 1

2F + 1
jF+1���
 −

3

2
�jF��� + ��jF���	 F

2F + 1

kF−1���
kF���

+
F + 1

2F + 1

kF+1���
kF��� 
 = 0, �A2�

�1 + 2�����j0���� − 2j2�����k1��� + 9�j1����k1��� + ��j1�����k0��� + 2k2���� = 0, �A3�

respectively. Here, �=B /A, �=A0 /A, � is defined by Eq. �17�, and � and � are functions of the hole energy E determined by
Eqs. �18� and �23� respectively.
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