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Abstract

A general theoretical approach to double photoemission from solid surfaces is formulated in terms of two-electron Green
functions and two-electron states. By incorporating the screened Coulomb interaction between the two outgoing electrons in a
dynamically screened effective one-electron potential, approximate expressions for the two-photoelectron current are derived,
which essentially consist of elements well-known from one-electron photoemission theory.q 2000 Elsevier Science Ltd. All
rights reserved.
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1. Introduction

Traditionally, the basic conceptual framework for dealing
with many-electron systems is the independent electron
model. The electronic structure is described mostly by
means of a self-consistent field, based on the Hartree–
Fock or the Kohn–Sham equations. Although the
effective-field approach has long served for the interpreta-
tion of photoemission spectra [1,2], its central assumption of
a single-particle wave function is, in general, of limited
applicability, e.g. it fails in narrow-band systems with strong
correlation between valence electrons [3]. The basic quan-
tity relevant to the many-body effects is the correlation
energy which, within density functional theory, is thought
to reach its exact value at the exact ground-state density.
However, the main question—to what extent the motion of
the electrons is interrelated—is to be addressed by means of
many-particle wave functions rather than by static proper-
ties such as the correlation energy. On the experimental side,
double photoelectron emission (DPE) from solids and
surfaces [4] is perfectly suited for the study of the correlated
dynamics. Detecting simultaneously two electrons after the
absorption of one photon, this process is one of the few
known that in principle cannot be described within the
single-particle picture. If the initial-state and the final-state

wave functions are taken as products of orthogonal one-
electron wave functions, the transition-matrix element for
double photoionization vanishes [5]. Thus, the inter-electro-
nic correlation plays a major role in determining the char-
acteristics of doubly excited states. In other words,
quantities used for the theoretical formulation of the
problem (wave functions, propagators, etc.) have to be of
at least two-particle nature. On the other hand, realizing that
all features of scattering within a crystal intrinsically
complicate the problem, it would be essential to seek for
an extension of the well-established one-step single-electron
photoemission (SPE) framework [6–8] to the case of DPE.
In the present Paper we follow both of these pathways.

In Section 2 we present a general formulation of the DPE
in terms of two-particle states and Green functions. Section
3 deals with schemes for calculating correlated two-particle
states in a solid. In particular, the pair interaction is formu-
lated in terms of dynamical screening. This approximation is
used in Section 4 to derive expressions for the DPE photo:
current, which are directly connected with established SPE
theory.

2. General expression for the two-electron photocurrent

We consider a process in which an incident photon with
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energyv knocks two electrons out of a semi-infinite solid
with periodicity parallel to the surface.1 The subsequent
detection of both outgoing electrons in coincidence allows
the simultaneous determination of their kinetic energiesE1

andE2 as well as the surface-parallel wave-vector compo-
nents~kk1 and~kk2 (cf. Fig. 1a). The plane waves at the detec-
tors are fully described by their momentum~kj ; j � 1; 2;
since the normal componentk'

j is related toEj by k'
j ���������������

2Ej 2 �~kkj �2
q

: Assuming the sudden approximation for the
DPE process, the photon field affects only those degrees of
freedom of the two electrons, which can be distinguished by
the detection process. We restrict ourselves to the pair inter-
action between these two ‘active’ electrons, thus neglecting
three-body and higher order terms as well as explicit many-
body effects with or between the ‘passive’ (ground state)
electrons.

In analogy to the well-known Green-function formulation
of SPE by Caroli et al. [9], we express the DPE current in the
dipole approximation in terms of the two-particle Green
function G,

J�~k1
~k2� � 2

1
p

kCuDIm Gr �E 2 v�D†uCl; �1�

whereuCl can be viewed as a time-reversed LEED state for

two correlated electrons, e.g. it has the (experimentally set)
boundary conditions of plane wavesu~k1l andu~k2l taken at the
detector positions and is propagated by the advanced Green
function Ga from inside the solid towards the detectors,

uCl � Gau~k1
~k2l: �2�

The kinetic energy of the outgoing electron pair isE � E1 1
E2; its surface-parallel momentum~Kk � ~kk1 1 ~kk2: In Eq. (1),
D is the two-particle dipole operator, i.e. the sum of two
single-particle dipole operators [5], and2Im Gr �E 2 v�=p
is the non-local density of two-particle states.

Eq. (1) can be represented by the diagram in Fig. 1b,
which is the two-particle analogue of the lowest order
diagram of the SPE theory. Interactions between the ‘active’
electron pair and the other electrons of the solid are thus
taken into account to the extent that they are incorporated in
the on-the-total-energy-shell Green functionG.

If the imaginary self-energy part is set to zero, e.g. assum-
ing an infinite two-particle life-time, Gr�E� in Eq. (1) can be
written in terms of two-particle statesuF il with energiesEi

and further quantum numbers denoted by the compound
index i,

2
1
p

Im Gr �E� �
X

i

uF ild�E 2 Ei�kF i u; �3�

where the summation overi is understood as integration in
the case of continuous quantum numbers. Inserting Eq. (3)
into the DPE expression (1) simplifies this to Fermi’s
‘golden rule’,

J�~k1
~k2� �

X
i

ukCuDuF ilu
2d�E 2 v 2 Ei�: �4�

The summation over unresolved quantum numbers
contained ini accounts for all initial two-particle states
that are compatible with energy conservation and symmetry
requirements imposed by the dipole transition to the parti-
cular final state. As was shown in Ref. [5], conservation of
the surface-parallel component of the momentum in the SPE
translates in DPE into the same but for the two-particle
momentum~Kk: This means that the two-particle momenta
are conserved modulo reciprocal surface-lattice vectors. In
Eq. (1),Gr can be restricted to these values of~Kki : Note that
due to the Coulomb interaction, single-particle momenta are
in general not ‘good quantum numbers’ in the DPE process.

In order to evaluate the above DPE current formulae,
ways have to be found to actually calculate the two-particle
Green function or the two-particle states involved. We
address this problem in Section 3.

3. Two-electron states

The HamiltonianH for two electrons inside the semi-
infinite solid consists of the kinetic energyK, the elec-
tron–electron interactionU, and the crystal potential
W;H � K 1 U 1 W: Due to the simultaneous occurrence
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Fig. 1. Two-electron photoemission. (a) Sketch of the experimental
geometry. A photon with energyv impinges onto the surface. Two
outgoing electrons with momenta~k1 and ~k2 are detected in coin-
cidence. (b) Diagrammatic representation of the photocurrent
expression (Eqs. (1) and (2)). Wavy lines represent the photon,
double straight lines with arrows correspond to retarded and
advanced two-electron Green functionsGr andGa at the final and
initial state energiesE andE 2 v: The double dashed line symbo-
lizes the emitted (and detected) electron pair.



of two difficulties—the many-body and the scattering
problem—we have to decide about the sequence of treating
U andW. Paying tribute to the fact that DPE is due to the
electron–electron interactionU, we assign the latter to the
reference HamiltonianHint � K 1 U: In this way the crystal
potential is kept as a perturbation. In the absence ofW, the
operatorGintU promotes the uncorrelated two-particle state
uF 0l; which is an eigenfunction ofK, to the correlated one

uF 1l � �1 1 GintU�uF 0l; �5�
the latter being an eigenfunction ofHint. Gint, the resolvent of
Hint, is the propagator of the internal motion of the electron
pair. The reference stateuF 1l is perturbed by the crystal
potential W and evolves into the state

uFl � �1 1 GintT�uF 1l: �6�
The transition operatorT describes the dynamic response of
the system upon the action ofW and obeys the Lippmann–
Schwinger equationT �W 1 WGintT:

Despite the fact thatuF 1l in Eq. (5) is a quasi-single-
particle subject to the scattering in the crystal, the internal
and external motions are not separable due to the presence
of Gint in Eq. (6). If U is negligible, the problem reduces to
scattering of independent particles. If this is not the case, use
of Eq. (6) in order to evaluate physically relevant quantities
requires further approximations, e.g. application of the
perturbation expansion ofGint with respect toU. This
would allow for a systematic treatment of correlation
effects. In the above formulation, our scheme is general
and applicable for both initial and final two-particle states
of the DPE process.

As an alternative to the above, we consider an approach
for the calculation of the final two-particle stateuCl; which
uses single-particle scattering states of the semi-infinite
system as reference states for the electron–electron interac-
tion. These states are well-known from LEED and SPE
theories and can be calculated by multiple-scattering meth-
ods (cf. e.g. Ref. [6]). Taking the Coulomb interactionU as a
perturbation,uCl then assumes the form

uCl � �1 1 GU�uc1c2l: �7�
uc1l anduc2l are single-particle time-reversed LEED states
which are plane wavesu~k1l and u~k2l; respectively, at the
detectors.

A rigorous evaluation of Eq. (7) is however complicated.
A computationally viable approximation has recently been
proposed in the context of pair emission by electron impact,
(e,2e) [10,11]. TakingU as a Thomas–Fermi-like screened
Coulomb interaction, this two-particle potential was
approximated by a sum of two single-particle potentials.
This amounts to a dynamical screening. Each electron
moves in an effective single-particle potential~wj ; j � 1; 2;
which is the usual quasi-particle potentialw of LEED theory
augmented by a dynamical screening term depending on the
other electron. Denoting bygj and ~gj the single-particle
Green functions for electronj in the potentialsw and ~wj ;,

respectively, our approximation takes the operator form

�1 1 GU��1 1 g1w��1 1 g2w� < �1 1 ~g1 ~w1��1 1 ~g2 ~w2�: �8�
The time-reversed LEED statesu ~c jl can then be written as

u ~c jl � �1 1 ~ga
j ~wj�g0

j u~kjl � ~ga
j u~kjl; �9�

in analogy to Eq. (2). They can readily be calculated by
employing ~wj in standard multiple-scattering computer
codes. The two-particle final state is then simply an anti-
symmetrized product of these single-particle states,

uCl � A�u ~c 1l ^ u ~c 2l�; �10�
where operatorA is antisymmetrizator.

4. Double photoemission from wide valence bands

In contrast to narrow-band systems, the ground state of
metals with sp-valence bands consists in good approxima-
tion of independent quasi-electrons moving in an effective
external potential. Hence, pair correlation can be neglected
in our initial two-particle state. Since the screening of single
electrons by the ground state electrons decreases with
increasing energy, one can expect non-negligible pair corre-
lation in the final state, which we approximate as described
above.

In order to evaluate the general photocurrent expression
Eq. (1) we first express the two-particle spectral density
2Im Gr/p in terms of retarded single-particle Green func-
tionsgr. Straightforward calculation yields

Im Gr �12; 1020;E� � 2 1
p

Z
d E0�Im gr�110;E 0�

× Im gr�220;E 2 E0�2 Im gr�120;E0� Im gr�210;E 2 E 0��:
�11�

We thus have a convolution involving a direct product plus
an exchange product, in which the co-ordinates 10 and 20 are
interchanged. Note that by taking the trace of Eq. (1) the
density of two-particle states N is obtained as a convolution
of single-particle densitiesn,

N�E� �
Z

d E0n�E 0�n�E 2 E 0�: �12�

We now substitute Eq. (11) and the final two-particle
state, Eq. (10), into Eq. (1). Using the decomposition of
the two-particle dipole operator into two single-particle
operators, we eventually obtain the DPE current as

J�~k1
~k2�~ 1

p2

ZEF

Emin

d E0�Id�E0�2 Ie�E 0�� �13�

where Emin � E 2 v 2 EF is the lowest occupied single-
particle level allowed by energy conservation.Id�E� is the
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direct intensity term defined as

Id�E 0� � k ~c 1uDIm gr �E 0�D†u ~c 1lk ~c 2uIm gr �E 0 0�u ~c 2l

1 k ~c 1uDIm gr �E 0�u ~c 1lk ~c 2uIm gr �E0 0�D†u ~c 2l

1 k ~c 1uIm gr �E0�D†u ~c 1lk ~c 2uDIm gr �E 0 0�u ~c 2l

1 k ~c 1uIm gr �E0�u ~c 1lk ~c 2uDIm gr �E0 0�D†u ~c 2l �14�
where E 00 � E 2 v 2 E0: The exchange contributionIe

consists of four terms like those ofId but in each term
u ~c 1lk ~c 2u is exchanged byu ~c 2lk ~c 1u:

Expressing the single-particle final states in terms of
Green functions, cf. Eq. (9), the four individual parts ofId

and those ofIe can be represented by eight diagrams, four
typical ones of which are shown in Fig. 2. The exchange
terms in the lower row are seen to arise from the direct terms
in the upper row by ‘crossing’ the two Green functions
associated with the single-particle initial states.

In order to recover the ‘golden rule’ form of the DPE
current, we assume infinite life-time of the particles and
express the retarded Green functionsgr in terms of eigen-
states of the single-particle Hamiltonian,

gr �E 0� � lim
h!01

X
k

ufklkfku
E 0 2 ek 2 ih

: �15�

In other words, the two-particle initial statesF j with
energiesEj are replaced by anti-symmetrized products of
single-particle statesfk andfl with energiesek 1 el � Ej ;

cf. Eq. (11). Note that for a givenEj the energiesek andel are
not fixed but range fromEmin � Ej 2 EF to the Fermi energy
EF. Eventually applying Dirac’s identity, we arrive at

J�~k1
~k2� �

Xocc

kl

uM �1�
kl 1 M�2�kl 2 M�1�lk 2 M�2�lk u2d�E 2 v 2 ek 2 el �;

�16�
where the matrix elementsM�1�kl andM�2�kl are defined as

M�1�kl � k ~c 1uDufklk ~c 1ufll �17�

M �2�
kl � k ~c 2uDufklk ~c 1ufll: �18�

The single-particle energy levels involved in Eq. (16) are
illustrated by Fig. 3, in which the grey region depicts the
initial state energy integration range contained in thek andl
summations.

Each matrix elementM is a product of a single-particle
transition-matrix element and an overlap integral between
‘the other’ single-particle initial and final states. These over-
lap integrals do not vanish in general because the effective
single-particle Hamiltonian is different for initial and final
states due to the electron–electron interaction. This allows
the following interpretation: when one electron absorbs the
photon, the effective potential changes such that the ‘shake-
up’ of the other one becomes possible. We further note that
in the present approximation the individual surface-parallel
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Fig. 2. Diagrammatic representation of the approximate two-elec-
tron photocurrent in terms of one-electron Green functionsg and ~g.
The upper (lower) two diagrams correspond to the first two direct
(exchange) terms given in Eq. (14) (its analogue withu ~c 1l andu ~c 2l
interchanged). The symbols are as in Fig. 1b except that single
straight lines with arrows represent one-electron Green functions.

Fig. 3. Energy diagram of the approximate DPE process as depicted
in Fig. 2. Initial states with energiesel andek are excited to time-
reversed LEED states with kinetic energiesE1 andE2 (relative to the
vacuum levelEvac), respectively. The energy region available for the
initial states (grey area) is given by the Fermi energyEF andEmin

(see text).



momenta are conserved, since when two electrons are
uncoupled there is no longer a mechanism responsible for
the momentum transfer within a pair.

From the above analytical expressions as well as from the
diagrams it is evident that the two-particle photocurrent has
been reduced to single-particle constituents. These can be
evaluated using standard procedures of one-electron photo-
emission theory with some modifications.

5. Conclusion

In conclusion, we have developed a multiple-scattering
formalism for the treatment of correlated electron-pair emis-
sion from surfaces upon the absorption of a single VUV
photon. By transforming the electron–electron interaction
from position into momentum space the two-photoelectron
current has been approximated in terms of single-electron
Green functions and transition-matrix elements. Numerical
evaluation of the formulae, which we derived in this work, is
currently in progress.
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