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We consider magnetic systems where the magnetic sublattices can be unambiguously separated into sublat-
tices of inducing and induced moments. The concrete numerical calculations are performed for half-metallic
ferromagnetic Heusler compound NiMnSb and hexagonal phase of MnAs. In both systems, Mn atoms possess
a robust atomic moment that is much larger than the induced moments of other atoms. It is shown that the
treatment of the induced moments as independent variables of the Heisenberg Hamiltonian leads to artificial
features in the spin-wave spectrum. We show that the artificial features of the model do not have a dramatic
influence on the estimated value of the Curie temperature. This is demonstrated within both mean-field ap-
proximation and random-phase approximation. It is shown that the calculational scheme where the induced
moments are assumed to fully adjust their values and directions to the adiabatic magnetic configurations of the
inducing moments is free from the artificial feature in the spin-wave spectra. In this scheme, the exchange
interaction between the inducing and induced moments appears as renormalization of the exchange interactions
between inducing moments. It is shown that the redistribution of the exchange interactions has strong influence
on the estimated value of the Curie temperature because of the decreased number of the degrees of freedom in
the thermodynamic model. Different schemes of the mapping of the systems on the Heisenberg Hamiltonian
are examined. The similarities and differences in the properties of NiMnSb and MnAs are discussed.
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I. INTRODUCTION

Historically, the first studies of the thermodynamics of
itinerant-electron systems were performed within the frame-
work of the Stoner theory where the effects of temperature
are taken into account by means of the temperature depen-
dence of the Fermi-Dirac distribution �see Ref. 1 for the
overview of the theory of itinerant-electron magnetism�. Al-
though the Stoner picture is successful in the description of
the ground-state properties of magnetic systems, the estima-
tions of the Curie temperature for elementary 3d ferromag-
nets exceed by about 1 order of magnitude the experimental
values. The reason for the failure of the Stoner theory to
describe the temperature dependences lies in the assumption
that the vanishing of the net magnetization in the paramag-
netic phase is the consequence of the vanishing of the local
magnetization. The important low-energy magnetic excita-
tions are missing in the Stoner theory that makes the de-
crease of the magnetization with heating too slow. These
low-energy excitations are related to the transversal fluctua-
tions of the magnetization and are routinely taken into ac-
count within the physical picture of localized atomic mo-
ments. The transversal fluctuations lead to the decrease of the
net magnetization through the disordering of the atomic mo-
ments instead of their vanishing. Therefore, the features of
the theory of localized atomic moments must be introduced
into the theory of itinerant-electron magnets to describe the
temperature effects and to estimate the Curie temperature.

At present, the main body of the studies of the thermody-
namics of the itinerant-electron magnets is based on the map-
ping of the systems on a Heisenberg Hamiltonian �see, e.g.,
Refs. 2–8�. The Heisenberg interatomic exchange parameters
are calculated from the first principles on the basis of the
density-functional theory. The knowledge of the exchange
parameters allows the evaluation of the spin-wave disper-
sion, the magnetic transition temperature, the temperature
dependence of magnetization, and other observable magnetic
properties. In this way, the ab initio estimations of the Curie
temperature of elementary 3d magnets have been strongly
improved.1

The procedure of the mapping of an itinerant-electron sys-
tem on the Heisenberg Hamiltonian is based on an adiabatic
hypothesis.5,9–11 Within this approach, the magnetic system is
separated into subvolumes, “atoms.” It is assumed that the
directions of the magnetic moments of these areas, “atomic
moments,” can be considered as slow variables compared to
the characteristic time of the relaxation of the electron states
to a given set of directions. Note that the subvolumes are not
necessary in the one-to-one correspondence to real atoms and
can contain several or none of the atomic nuclei.11,12

The main focus of the given paper is on the itinerant-
electron magnetic systems characterized by the property that
different atomic sublattices play different roles in the mag-
netism of the materials. In many systems, it is possible to
unambiguously distinguish the sublattices into, first, the sub-
lattices with robust atomic magnetic moments formed prima-
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rily because of the intra-atomic exchange interaction and,
second, the sublattices with induced moments that appear
under the influence of the atomic moments of the sublattices
of the first type.

Although the magnetism arises from the first type of sub-
lattices, the properties of induced moments can influence im-
portantly the physics of the material. For example, in a re-
cent letter on half-metallic ferromagnet NiMnSb, Ležaić et
al.3 have demonstrated that the longitudinal fluctuation of the
induced Ni moments being introduced into Heisenberg
model leads to a singular temperature behavior of the mag-
netic susceptibility of the Ni sublattice. This singularity ap-
pears at the temperature that is much lower than the Curie
temperature of the system. On the other hand, the conven-
tional treatment of the Heisenberg model does not give any
peculiarity in the temperature dependence of the magnetic
susceptibility of the Ni sublattice.

Another example of the system where unusual properties
of the sublattice of the induced moments has been recently
found is hexagonal MnAs.13 Here, a nonmonotonous re-
sponse of the induced As moments on the net magnetization
of the Mn sublattice has been obtained. This property of the
induced moments correlates with an instability of the collin-
ear ferromagnetic structure of the Mn sublattice with respect
to weak canting.

Further examples of the importance of the relation be-
tween inducing and induced moments are given by the fol-
lowing two physical problems many times discussed in the
literature: the dependence of the interatomic exchange inter-
action between 3d magnetic moments on the spin polariza-
tion of the sp electrons �see, e.g., Ref. 14 and references
therein�, the strong noncollinearity between sp and d magne-
tization in strongly canted ferromagnets,15 and the magnetic
ordering in diluted magnetic semiconductors by means of
the formation of bound magnetic polarons.12 Finally, we
would like to mention FeRh system where the properties
of the induced Rh moment are responsible for the
antiferromagnetic-ferromagnetic phase transition.16,17

In the present paper, we combine first-principles calcula-
tions and model-Hamiltonian treatment to address the ques-
tions related to the influence of the induced moments on the
physics of magnetic materials. We discuss different ap-
proaches to the mapping of an itinerant-electron system on
the Heisenberg Hamiltonian that can be considered as oppo-
site limits in the treatment of the induced moments. We com-
pare exchange parameters and Curie temperatures obtained
within different schemes. We analyze NiMnSb and MnAs
compounds revealing important differences and similarities
between them.

II. MAPPING OF THE ITINERANT ELECTRON SYSTEM
ON A HEISENBERG HAMILTONIAN

A. General notes

The mapping of an itinerant-electron system on a Heisen-
berg Hamiltonian

Hef f = − �
�,�

�
R,R�

��R��R��

JRR�
�� eR

�eR�
� �1�

consists in the determination of the interatomic exchange
parameters JRR�

�� on the basis of first-principles density-
functional-theory �DFT� calculations. In Eq. �1�, the indices
� and � number different sublattices, R and R� are the lattice
vectors specifying the atoms within sublattices, and eR

� is the
unit vector pointing in the direction of the atomic magnetic
moment at site �� ,R�.

The physical fundamentals for the mapping is given by
the adiabatic hypothesis that assumes that the variation of the
directions of atomic moments under the influence of tem-
perature or external magnetic field is slower than the adap-
tation of the electronic system to the given set of directions.
Therefore, the directions of the magnetic moments, eR

�, can
be treated as classical parameters, whereas the energy of the
system for each set of parameters, E��eR

���, is obtained in
quantum-mechanical DFT calculations. The successful map-
ping on the Heisenberg Hamiltonian should give the param-
eters JRR�

�� that reproduce well the total-energy function
E��eR

���.
Any concrete numerical calculation of the exchange pa-

rameters deals with the evaluation of the total energies of a
certain subset of magnetic configurations �eR

� �. Different cal-
culational schemes use different subsets of the magnetic con-
figurations. In an ideal Heisenberg system, the exchange pa-
rameters should not depend on the calculational procedure
since the energy of any magnetic configuration is exactly
described by Eq. �1� with the same set of the parameters. For
real systems, the dependence on the method of calculation
can, however, be strong. Below, we briefly characterize the
main methods of the determination of the interatomic ex-
change parameters.

The most convenient and most frequently used method is
suggested by the formula of Liechtenstein et al.2 The for-
mula gives an analytical expression for the second deriva-
tives of the band energy with respect to the deviations of the
atomic moments. It is based on the magnetic force theorem
that allows, to a certain accuracy, replacing the comparison
of the total energies of the magnetic configurations by the
comparison of the band energies. The exchange-correlation
potential of the excited state is not calculated self-
consistently but is generated by the spinor rotation of the
ground-state potential.

The second approach is based on the total-energy calcu-
lations for a set of collinear magnetic structures obtained by
the reversal of the directions of some of the atomic moments.
These calculations can be performed with any standard DFT
code. They require, however, the use of large magnetic su-
percells. Since the change of the interspin angles obtained by
reversal of the atomic moments is as large as 180°, the cor-
responding states of the system have low statistical weight in
the statistical mechanics of the thermal magnetic disordering.

In this paper, we use frozen-magnon approach. It is more
time consuming than the calculation with the formula of
Liechtenstein et al. The method allows, however, the use of
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magnetic configurations with arbitrary angles between
atomic magnetic moments. Therefore, the dependence of the
exchange parameters on the choice of the magnetic configu-
rations whose energy is evaluated can be studied. The calcu-
lations can be performed both with the use of the force theo-
rem and self-consistency. This allows the control of the
accuracy of the force-theorem calculations.

B. Frozen-magnon approach

The frozen magnon of the �th sublattice characterized by
wave vector q is defined by the expression

eR
� = �sin �� cos„���q� + qR…,sin �� sin„���q� + qR…,cos ��� ,

�2�

where �� is the polar angle of the frozen magnon and �� is
the initial phase angle of the sublattice that can be different
for different q.

Substituting Eq. �2� into Eq. �1�, we get for the total en-
ergy

E�q,���,���� = − �
�,�

�cos �� cos ��J0
��

+ sin �� sin ��RJ��
„q,�����q�…� , �3�

where

J��
„q,�����q�… = exp�− i�����q���

R
exp�iqR�J0R

�� ,

�4�

J0
�� = �

R
J0R

�� , �5�

�����q� = ���q� − ���q� . �6�

In the case of �����q�=0, we will use a simplified notation
J���q ,0��J���q�.

The evaluation of the exchange parameters involves sev-
eral steps. To find the interaction parameters between the
spins of the same sublattice �, we take a nonzero value of
��=�. The polar angles of other sublattices are set to zero.
The Heisenberg energy of such structures takes the form

E����,q� = E0
����� − sin2 �J���q� , �7�

where E0
����� does not depend on q. Performing ab initio

calculation of E���� ,q� for a regular q mesh and making
back Fourier transformation,

J0R
�� =

1

N
�
q

J���q�exp�− iqR� , �8�

we get the intrasublattice exchange parameters. Here, N is
the number of the points in the q mesh.

To find the exchange parameters for atoms belonging to
two different sublattices � and �, we take the nonzero value
of the polar angle for these two sublattices: ��=��=��0.
The Heisenberg energy of such magnetic structure after some
algebra can be represented in the form

E��
„�,q,�����q�… = E0

����� − sin2 ��J���q� + J���q�

+ exp„− i�����q�…J���q�

+ exp„i�����q�…J���− q�� , �9�

where E0
����� is a q-independent contribution to the energy.

The single-sublattice terms J�� and J�� are known from the
first step. To find the intersublattice exchange parameters,
one needs to perform back Fourier transformation of J���q�.
In simple centrosymmetric two-sublattice systems, the quan-
tities J���q� can be shown to be real. In this case, one q scan
for given � and � is sufficient to determine the interatomic
exchange parameters between the atoms of these sublattices.
In general, however, J���q� are complex and the ab initio
calculations with two different phases �����q� are needed to
fully determine J���q� on the basis of Eq. �9�. The choice of
these two phases can be different. For example, �����q�
=0 and �����q�=q�a�−a�� or �����q�=q�a�−a�� and
�����q�= �q+Km��a�−a��, where Km is a vector of the re-
ciprocal lattice.

III. TWO-SUBLATTICE HEISENBERG MODEL:
APPLICATION TO NiMnSb

An important purpose of this paper is to contribute to the
understanding of the properties of systems with different
types of magnetic sublattices. This purpose is achieved by
the combined consideration of both the first-principles calcu-
lations and the model-Hamiltonian treatment. In this and the
next sections, the discussion is based on the results of the
calculations for the half-metallic ferromagnet NiMnSb.18

The DFT calculations are performed with the augmented
spherical wave �ASW� method19 within the generalized gra-
dient approximation. The calculations of the spiral magnetic
configurations �Eq. �2�� are based on the generalized Bloch
theorem �see, e.g., Ref. 20� that allows, for an arbitrary wave
vector q, reducing the consideration of the magnetic spiral to
the chemical unit cell of the crystal. The DFT calculation for
the frozen-magnon states belongs to the type of the so-called
constraint DFT calculations where the minimization of the
total-energy functional is performed under restricting
conditions.21

Most of the calculations reported in this paper are per-
formed within the atomic sphere approximation.19 The con-
straint of the magnetic structure was imposed by choosing
the directions of the local spin-quantization axes coinciding
with the constrained directions of the atomic moments. The
constraining fields21 orthogonal to the directions of magnetic
moments were assumed to compensate the components of
the atomic moments that are orthogonal to the directions of
quantization. For the sake of comparison, a part of the cal-
culations has been performed with a more time-consuming
calculation based on the modification of the ASW method
that takes into account the nonspherical part of the potential
within the atomic spheres22 and calculates the constraining
fields self-consistently.

The details of the crystal structure of Heusler compounds
can be found, for example, in Ref. 23. The ground-state val-
ues of the spin moments of the Mn and Ni atoms were ob-
tained to be mMn=3.85�B and mNi=0.20�B.
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In the following, we discuss the results of a two-sublattice
frozen-magnon calculation for NiMnSb. The corresponding
exchange parameters are shown in Fig. 1. Here, we consider

JMn-Mn and JMn-Ni leaving the discussion of J̄Mn-Mn until Sec.
IV. The Ni-Ni exchange interactions are very weak and are
not shown. In the following calculations, they are neglected.

The strongest exchange interaction takes place between
the nearest and next-nearest Mn atoms and the nearest Mn
and Ni atoms. Note that direct comparison of the Mn-Ni and
Mn-Mn exchange parameters depicted in Fig. 1 overesti-
mates the Mn-Ni exchange interaction because of the differ-
ent numbers of the atoms in the Ni and Mn coordination
spheres. The multiplication of the first Mn-Ni and Mn-Mn
exchange parameters with the coordination numbers, respec-
tively, 4 and 12, gives the ratio of 0.16. Therefore, the lead-
ing Mn-Ni exchange, although weaker than the leading
Mn-Mn exchange interaction, is significant. The following
question arises: Does the account for the Mn-Ni exchange
interaction give the correction to the Curie temperature of the
order of the ratio between the Mn-Ni and Mn-Mn exchange
interactions? This question is addressed later in this section.
First, we discuss the spin-wave excitations in systems with
two inequivalent sublattices.

The spin-wave energies of such a system are given by the
eigenvalues of the matrix

	J0
11 + J0

12 − J11�q� − J12�q�
− J12�q�* J0

12 
 . �10�

The eigenvectors of this matrix determine the shape of the
spin waves. The analytical expression for the two spin-wave
branches is given by formula

�1,2 =
1

2
�J0

11 − J11�q� + 2J0
12� �

1

2
��J0

11 − J11�q��2

+ 4�J12�q��2�1/2. �11�

In Fig. 2, we show the spin-wave dispersion for �X direc-
tion in the Brillouin zone. A notable feature of the spin-wave
dispersion is the low-energy band that is weakly dispersive
outside of a region around q=0. To better understand the
nature of the spin-wave bands, we consider the eigenvalues
of matrix given by Eq. �10� in the case of �J12�q��	 �J0

11

−J11�q��:

�1�q� � J0
12 −

�J12�q��2

J0
11 − J11�q�

. �12�

�2�q� � �J0
11 − J11�q�� + J0

12 +
�J12�q��2

J0
11 − J11�q�

. �13�

We see that the first band is close to J0
12, while the form of

the second band is mainly determined by the term �J0
11

−J11�q�� describing the spin-wave dispersion of the first sub-
lattice in the case that intersublattice interaction is neglected.
The eigenvectors of matrix �10� determine the ratio between
deviation angles �Mn and �Ni in the corresponding spin-wave
modes. This ratio as a function of q is presented for both
bands in the lower panel of Fig. 2. In the logarithmic scale of
the ordinate, the two curves are symmetric with respect to
�Mn/�Ni=1. This means that for a given q, the ratios for the
two bands are reversed with respect to each other. At q=0,
the deviations are equal to each other for both acoustic and
optic modes. For the acoustic mode, this simply means that
the magnetic structure rotates as a whole that, in agreement
with the Goldstone theorem, costs no energy. For larger q, in
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FIG. 1. �Color online� The calculated exchange parameters of
NiMnSb. The parameters JMn-Mn and JMn-Ni are obtained with the
use of the force theorem. The self-consistent SF2 scheme gives
parameters that are very close to the results of the FT calculations.

J̄Mn-Mn presents the exchange parameters obtained with the use of
the frozen-magnon energies calculated within the SF1 scheme. In

the inset, the parameters JMn-Mn and J̄Mn-Mn are compared. All
frozen-magnon calculations are performed for �=30°. The ex-
change parameters are defined for discrete values of the interatomic
distances. The lines connecting the values of the exchange param-
eters are guides for the eye.
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FIG. 2. �Color online� The properties of spin waves of NiMnSb
calculated with the two-sublattice Heisenberg model. Upper panel:
the spin-wave dispersions �1,2. The broken curves present the q
dependence of the exchange parameters. Lower panel: the ratio of
the deviations of the atomic moments of Mn and Ni from the mag-
netization axis as a function of q and for both spin-wave branches.
In the ordinate axis, the logarithmic scale is used.
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the first spin-wave band, �Ni is much bigger than �Mn, while
the relation is opposite for the second band.

The appearance of the low-energy weakly dispersive mag-
non band is a characteristic feature of the theory where small
induced moments are treated as independent adiabatic de-
grees of freedom �see, e.g., Ref. 24�. A division of the unit
cell into smaller pieces and an adiabatic treatment of the
moments of these pieces lead to the appearance of additional
spin-wave bands.11 Since there is no experimental evidence
of the existence of these weakly dispersive low-energy
bands, they should be considered as an artifact of the treat-
ment of the induced moments.

The presence of the artificial features in the spin-wave
spectrum raises the question of how far the treatment of the
induced moments as independent Heisenberg variables influ-
ences the value of the Curie temperature. To answer this
question, we consider the calculation of the Curie tempera-
ture of the two-sublattice model within the mean-field ap-
proximation �MFA� and random-phase-approximation
�RPA�.

In MFA, the Curie temperature is given by the largest
eigenvalue of the matrix25

	J0
11 J0

12

J0
12 0


 �14�

that takes the form

kBTC
MFA =

J0
11

3 1 + �1 + 4	 J0
12

J0
11
2�1/2� . �15�

For �J0
12�	 �J0

11�,

TC
MFA � T̃C

MFA�1 + 	 J0
12

J0
11
2� , �16�

where kBT̃C
MFA= 2

3J0
11 determines the Curie temperature in the

case that only the interactions within the first sublattice are
taken into account. As follows from Eq. �16�, the correction
to the Curie temperature because of the contribution from the
induced sublattice is of the second order with respect to the
intersublattice interaction. Indeed, the calculation of the Cu-
rie temperature of NiMnSb on the basis of Eq. �15� shows
that it increases rather weakly from 1081 K, in the case
where the first sublattice only is considered, to 1101 K, in
the case that both Mn and Ni sublattices are taken into ac-
count.

Since an important feature of the RPA is the account for
renormalized spin-wave excitations,26 it can be expected that
the artificial features in the spin-wave dispersion will have
here stronger influence on the Curie temperature than in
MFA. In RPA, the Curie temperature of our model system is
determined by the following two equations corresponding to
the two sublattices considered:27

1

kBTC
=

3

2

1



� dq

�J0
11 − J11�q�� +

m2

m1

1

J0
12��J0

12�2 − �J12�q��2�
,

�17�

1

kBTC
=

3

2

m2

m1

1

J0
12

1




�� �J0
11 − J11�q�� +

m2

m1
J0

12�dq

�J0
11 − J11�q�� +

m2

m1

1

J0
12��J0

12�2 − �J12�q��2�
.

�18�

These equations determine simultaneously the Curie tem-
perature and the limit of the ratio of the magnetizations of
two sublattices,

m2

m1
, as the temperature tends to the Curie

temperature. They can be solved by the variation of
m2

m1
and

searching for the intersection of the two curves TC� m2

m1
� com-

ing from both Eqs. �17� and �18�.
It is instructive to compare Eq. �17� with the RPA expres-

sion for the Curie temperature in the one-sublattice system,

1

kBTC
=

3

2

1



� dq

�J0
11 − J11�q��

. �19�

The difference of the two expressions is in the second term
in the denominator that depends on the ratio of the sublattice
magnetizations and on the exchange interaction between two
sublattices. For small

m2

m1
, the Curie temperature of the two-

sublattice system should not differ much from the Curie tem-
perature of the first sublattice.

The graphical solution of Eqs. �17� and �18� for the Mn
and Ni sublattices of NiMnSb gives the ratio of the sublattice
magnetizations about 0.16 �Fig. 3� that coincides with the
relative strength of the Mn-Mn and Mn-Ni interactions esti-
mated above.

Since we are working with reduced magnetizations,28 the
ratio of the magnetizations at zero temperature is 1. There-
fore, the magnetization of the induced sublattice drops with
heating faster than the magnetization of the inducing sublat-
tice. As is seen from Eq. �17�, this property diminishes the
influence of the intersublattice exchange interaction on the
Curie temperature and makes the correction of the Curie
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FIG. 3. �Color online� The graphical solution of the RPA equa-
tions �Eqs. �17� and �18�� for the Curie temperature of NiMnSb.
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temperature small. For NiMnSb, the RPA-TC changes under
the influence of the Ni sublattice from 842 to 854 K that
gives a very small increase by 1.4%.

Summarizing this part, we conclude that though the con-
sideration of the induced moment as independent variable
leads to artificial features in the magnon spectrum, this treat-
ment does not influence dramatically the value of the Curie
temperature. The effect of the Mn-Ni exchange interaction
on the Curie temperature is smaller than it might be expected
from the relative value of the Mn-Mn and Mn-Ni exchange
interactions. In the MFA formula, the change in the Curie
temperature appears quadratic with respect to the ratio of the
Mn-Ni and Mn-Mn exchange interactions, whereas in the
RPA, the influence of the second sublattice is diminished by
the small factor giving the ratio of the sublattice magnetiza-
tions.

It is important to understand how far the results obtained
in this section depend on the procedure of the mapping of an
itinerant-electron system on the Heisenberg Hamiltonian. In
the following section, we develop another calculational
scheme that is free from the artificial feature in the spin-wave
spectrum discussed above. We show that the scheme results
in significantly increased Curie temperature.

IV. RELAXATION OF THE INDUCED MOMENTS

We assume now that only the moments of the inducing
magnetic sublattice are independent adiabatic degrees of
freedom. In this case, the total-energy function E��ei�� intro-
duced above depends on the directions of the inducing mo-
ments only. In the DFT calculation of E��ei��, the directions
of the inducing magnetic moments are constrained, whereas
the induced moments relax freely within self-consistent
Kohn-Sham procedure adjusting their sizes and directions to
the constrained inducing moments. The size of the inducing
moments is also determined self-consistently for each mag-
netic configuration. The force theorem in the form discussed
by Liechtenstein et al.2 does not take into account the relax-
ation of the induced moments and cannot be applied here.
Therefore, in the calculation of the exchange parameters, the
total energies of the self-consistent states are used instead of
the band energies of the non-self-consistent states employed
in the force-theorem calculations.

Since we compare below the results of calculations within
different schemes, it is convenient to introduce abbreviations
simplifying the reference to the schemes. The non-self-

consistent force-theorem calculations will be referred to as
FT. The self-consistent calculation with both the value and
the direction of the induced moments to be relaxed will be
referred to as SF1. The self-consistent calculation where the
direction of the induced moments is kept parallel to the z axis
will be referred to as SF2. The directions of the magnetic
moments used in SF2 calculation of the Mn-Mn exchange
parameters are identical to the directions of the magnetic
moments employed by the FT calculations. As pointed out
above, the SF2 scheme uses the total energies obtained self-
consistently, while the FT employs the band part of the total
energy obtained for the modified ground-state potential. The
difference between SF1 and SF2 calculations is illustrated
schematically in Fig. 4. The upper line of atoms presents the
SF1 type of calculation where the induced moments self-
consistently adjust their directions to the directions of the
inducing moments. In the lower line of atoms, the induced
moments are kept parallel to the z axis. In both cases, the
magnetic structure of inducing sublattice is the same and is
determined by the given � and q.

In Figs. 5–7, the results of the frozen-magnon calculations
are presented for several selected wave vectors. The vectors
are parallel to each other and differ by the length: qi

= �0,0 , i
4

� 2�
a . Here, a is the lattice constant and i=1,2 ,3 ,4.

The value of the wave vector determines the azimuthal

q

SF1

SF2

θ

θ

FIG. 4. �Color online� The schematic presentation of the SF1
�top� and SF2 �bottom� schemes for the self-consistent calculation
of the frozen magnons. See text for the description.
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angles of the atomic moments �Eq. �1��. For small q, the
angles between neighboring Mn moments are small for any
�Mn. On the other hand, for q=q4, the local Mn magnetic
structure depends strongly on �Mn varying from the collinear
ferromagnetism for �Mn=0 to collinear antiferromagnetism
for �Mn=90°.

Figure 5 shows the self-consistent Mn moment as a func-
tion of �Mn calculated for frozen magnons with different
wave vectors. The Mn moment is robust and depends weakly
on the magnetic configuration that is in good agreement with
the assumptions of the Heisenberg model of rigid atomic
moments.

The properties of the induced Ni moments �Figs. 6 and 7�
are very different. Figure 6 shows the angle �Ni of the devia-
tion of the Ni induced moment from the magnetization axis
as a function of �Mn obtained within the SF1 calculation.
Since for small q the local structure of Mn moments is close
to collinear ferromagnetism, the direction of the induced Ni
moment is almost parallel to the directions of the surround-
ing Mn moments. Therefore, function �Ni��Mn� is almost lin-
ear. �For q=0, �Ni is exactly equal to �Mn.� With increasing
q, the deviation from collinearity increases that reflects in-
creasing difference between �Ni and �Mn. For q=q4, the
torques coming from different Mn atoms compensate and the
induced Ni moments stay parallel to the z axis independent
of �Mn. �For q=q4 and �Mn=90°, the induced Ni moment is
exactly zero �see Fig. 7 and the discussion below�, and there-
fore an arbitrary �Ni can be assigned at this point.�

The �Mn dependence of the size of the induced Ni mo-
ments obtained within the SF1 scheme is also different for
different q. Since for small q the local configuration of Mn
moments changes weakly with the variation of �Mn, the de-
pendence of the value of the induced Ni moment on �Mn is

weak. With increasing q, mNi as a function of �Mn decreases
faster. For q=q4, the induced moment vanishes for �Mn
=90°.

In contrast to the SF1 scheme, in the SF2 approach, the
behavior of mNi��Mn� is similar for all q values: mNi drops
from the ground-state value at �=0 to zero at �=90°. The
dependence mNi��Mn� is, in this case, well described by
cos �Mn, which means that mNi is approximately proportional
to the z projection of the Mn moments. For q=q4, both SF1
and SF2 curves are very close to each other since in both
cases the induced Ni moments are parallel to the z axis.
�These curves are not identical because of the properties of
the induced Sb moments that we do not show.�

It is useful to relate the treatment of the Ni moment in
SF2 scheme �mNi�Oz� to the Stoner treatment of the tem-
perature dependence of the magnetic moments. Similar to the
Stoner model, in the SF2 scheme, the induced moments keep
their directions parallel to the magnetization axis. The value
of the Ni moment decreases because of the decrease of the
net magnetization of the Mn sublattice. If we make the
physical assumption that the direction of the induced mo-
ments is determined by the net moment of the whole Mn
sublattice and not by the local Mn environment, the SF2
scheme is an adequate method to study the thermal processes
in NiMnSb. In particular, the SF2 can be considered as
proper technique to evaluate the Mn-Mn exchange param-
eters. The assumption that the induced moments keep to stay
parallel to the z axis with the disordering of the Mn moments
is not supported by our SF1 calculations where the directions
of the Ni moments are allowed to relax. Indeed, for small-q
fluctuations of the Mn sublattice, the self-consistent Ni mo-
ments follow the directions of the neighboring Mn moments.
It must, however, be noted that a decisive conclusion on
which of the mapping schemes gives a better description of
the physics of a given system may be made only on the basis
of a more general calculational approach that contains both
SF1 and SF2 schemes as special limiting cases. Such an
approach should take into account longitudinal fluctuations
of the moments as well as the dynamical properties of the
fluctuations. The development of such approach is one of the
complex problems of the solid state physics and is beyond
the scope of the given paper. Instead, we use the comparison
with experiment to draw some empirical conclusions.

On the next step, we compare the energies of the frozen
magnons calculated with FT, SF1, and SF2 schemes.

In Fig. 8, we present the �Mn dependences of the frozen-
magnon energies. First, we notice that the difference between
the curves obtained within SF1 and SF2 schemes is large for
small q and decreases with increasing q. This is in correla-
tion with the properties of the induced Ni moments discussed
above �Fig. 7�: the difference in the values and directions of
the induced moments obtained in two schemes is decreasing
with increasing q. The force-theorem calculations reproduce
well the SF2 curves up to �Mn of about 50° for q1 and up to
75° for q4.

Figure 1 presents the exchange parameters obtained with
the frozen-magnon energies calculated for �Mn=30°. The FT
and SF2 schemes give similar values of the exchange param-
eters whose difference cannot be distinguished in the scale of
Fig. 1. The main contributions into Mn-Mn exchange inter-
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actions give the interactions within two nearest coordination
spheres. For Mn-Ni interaction, only the nearest neighbors
contribute importantly. In Fig. 1, the exchange parameters
are presented as a function of the interatomic distance. Dis-
tances assume discrete values corresponding to the radii of
the coordination spheres. The lines are guides for the eye.
The fast decay of the exchange parameters is related to the
presence of the semiconducting gap in one of the spin chan-
nels of the half-metallic NiMnSb.6,29 For the comparison of
the exchange parameters, it is important to take into account
the number of the atoms in corresponding coordination
spheres. For the Mn-Ni interaction, this number is 4, while
for the two first Mn-Mn interactions, the coordination num-
bers are, respectively, 12 and 6.

Analysis of Fig. 1 shows that the leading Mn-Mn ex-
change interaction obtained within the SF1 calculation of the

frozen-magnon energies �J̄� is significantly larger than the
corresponding interaction obtained with the SF2 calculation.
To reveal the origin of this difference in the exchange param-
eters, we consider the frozen-magnon energies as a function
of q �Fig. 9�. It is important to notice the change of the
energy origin between Figs. 8 and 9. In Fig. 8, the origin is
selected separately for each of the curves at the value of the
energy at �Mn=0. On the other hand, in Fig. 9, the origin is
the same for both curves and coincides with the ground-state
energy.

The variation of the energy as a function of q is larger in
the SF1 case �Fig. 9�. At the right end of the q interval, the
SF1 and SF2 energies are very close. This is expected since
for this wave vector, the induced Ni moment is parallel to the
z axis in both schemes. The difference of the two curves
stems from the region of small q. At q=0, the SF1 structure
coincides with the ground state, whereas in the SF2 calcula-

tion, the Ni and Mn moments form angle �Mn. Therefore, the
difference in the two curves is determined by the strength of
the Mn-Ni exchange interaction.

In the previous section, both Mn and Ni atomic moments
were treated as independent degrees of freedom. Respec-
tively, the Mn-Ni exchange interaction is represented by a
separate exchange parameter JMn-Ni. On the other hand, in
the SF1 scheme, where only the Mn moments are treated as
independent degrees of freedom, the Mn-Ni exchange inter-
action appears as contribution to the renormalized Mn-Mn
exchange interaction. This explains why the leading Mn-Mn
exchange parameter in the SF1 case is enhanced compared to
the corresponding parameter in the SF2 scheme. The inset of
Fig. 1 shows that significant change is obtained only for the
exchange interaction between nearest Mn atoms.

As mentioned above, to compare the interatomic ex-
change interactions, the values of the exchange parameters
must be multiplied by the corresponding coordination num-
bers that is by 4 for the Mn-Ni interaction and by 12 for the
Mn-Mn nearest neighbor interaction. Now, the contribution
of the Mn-Ni exchange interaction can be estimated as

12�J̄Mn-Mn−JMn-Mn��1.1 mRy in the SF1 scheme and as
4JMn-Ni�1.4 mRy in the scheme where the Ni moments are
considered as independent variables. Both contributions of
the Mn-Ni exchange interaction are comparable. Therefore,
the transition from one scheme to the other can be inter-
preted as different distribution of the Mn-Ni exchange inter-
action between exchange parameters.

This conclusion raises an important question: Does the
redistribution of the exchange interactions influence the
value of the Curie temperature? The answer to this question
is positive. The change of the distribution of the exchange
interactions is connected with the replacement of a two-
sublattice Heisenberg problem by a single-sublattice prob-
lem. The reduction of the number of the degrees of freedom
changes the thermodynamic properties of the system. Indeed,
we have seen above that in the two-sublattice case, a weak
intersublattice interaction gives a second-order correction to
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the Curie temperature. On the other hand, the corresponding
enhancement of the exchange Mn-Mn parameter in the one-
sublattice case gives the first-order correction to the Curie
temperature and results in a substantially larger increase of
TC.

In Table I, we compare the values of the Curie tempera-
tures obtained within different schemes on the basis of the
frozen-magnon calculations for �=30°. Indeed, the increase
of TC due to the Mn-Ni interaction is stronger in the SF1
scheme where this interaction appears as a part of the renor-
malized Mn-Mn exchange parameters. All estimations ex-
ceed the experimental value of 730 K. Therefore, on the
present level of our knowledge, the SF2 scheme seems to
provide a better basis for the study of the thermodynamics of
the NiMnSb.

A useful information about the role of the exchange inter-
action between distant atoms is given by the Curie tempera-
ture calculated in the MFA as a function of the number of the
coordination spheres taken into account �Fig. 10�. The ab-
scissa axis shows the maximal distance between Mn atoms
whose interaction is included into the evaluation of the Curie
temperature. The value of TC varies weakly when the in-
cluded interatomic distances exceed 2a, where a is the lattice
parameter. Figure 10 also illustrates the similarity of the ex-
change parameters calculated with both force theorem �FT�
and SF2 schemes.

In an ideal Heisenberg system, the value of the Curie
temperature does not depend on the value of the frozen-
magnon angle � used in the mapping procedure. For real
itinerant-electron systems, the invariance of the Curie tem-
perature with respect to the polar angle of the frozen mag-
nons used in the calculations is not guaranteed and must be
the subject of the study.

In Fig. 11, we compare the �Mn dependence of first two
Mn-Mn exchange parameters. In both SF1 and SF2 calcula-
tions, the leading exchange parameter between nearest Mn
atoms increases substantially with increasing �.

In Fig. 12, we compare the Curie temperatures obtained
with various schemes and for different values of the �Mn in
the frozen-magnon calculations. Similar to the calculation
for �Mn=30°, the SF2 and FT values of the Curie tempera-
ture are close to each other for the whole range of �Mn. The
dependence of the estimated Curie temperature on �Mn is

TABLE I. Calculated Curie temperature �in K� of NiMnSb. The
first row shows the exchange parameters used in the calculations.
Three cases are considered. In the first case, only the unrenormal-
ized Mn-Mn exchange parameters are used. In the second case, the
Ni moments are considered as independent degrees of freedom. In
the third case, the Mn-Mn exchange parameters renormalized be-
cause of the Mn-Ni exchange interaction are employed. Both the
MFA and RPA estimations of the Curie temperature are presented.

JMn-Mn JMn-Mn, JMn-Ni J̄Mn-Mn

MFA 1081 1101 1212

RPA 838 858 973
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moderate. In the RPA calculations, it is weaker than in the
MFA case. In full agreement with the conclusions formulated
above, the SF1 scheme gives significant increase of the Curie
temperature compared to the SF2 scheme. In addition to the
FT, SF1, and SF2 schemes discussed earlier, we present the
results of the calculation of the Curie temperature with the
version of the ASW method that takes into account the non-
spherical part of the potential within the atomic spheres �see
the curves labeled FP-SF1 in the figure�.22 The FP-SF1 data
give weaker dependence of the MFA-TC on �Mn than the SF1
data. In other aspects, the SF1 and FP-SF1 results are similar.

The comparison with the experimental value of the Curie
temperature of 730 K shows that the theoretical values over-
estimate the experimental quantity. Therefore, at the present
level of our knowledge, we should conclude that the Stoner-
like treatment of the induced moment in NiMnSb gives a
better description of NiMnSb than the assumption that the Ni
moment quickly adjusts itself to the local Mn environment.

V. MnAs

Another system that we consider in this paper is hexago-
nal MnAs �see Ref. 13 and references therein�. An unusual
sequence of the phase transitions in MnAs attracts the atten-
tion of researches for many decades. Despite much efforts,
the physics of the system remains the matter of debate. Re-
cently, the studies on MnAs were further motivated by the
possible applications in spintronic devices. Although the
models suggested to explain the physics of hexagonal MnAs
are very different in details, there is a general consensus that
this system is characterized by an intimate connection be-
tween atomic structure and exchange interactions. In Ref. 13,
we have shown that the hybridization of the Mn and As
states leads in -MnAs to unusual nonmonotonous behavior
of the induced As moment on the net magnetization of the
Mn sublattice. The correlation between the unusual behavior
of the induced moments and weak noncollinearity of the
ground-state magnetic structure has been revealed.

Here, the scheme used in the study of NiMnSb in the
previous sections is applied to hexagonal MnAs. In particu-
lar, we consider different treatments of induced As moments.
The results obtained are compared with those for NiMnSb.

The angle of the deviation of the induced As moments
from the z axis as a function of the deviation angle of the Mn
moments �SF1-type calculation� is presented in Fig. 13. The
data are shown for three different values of the wave vector:
qi= �0,0 , i

3
� 2�

c . Here, c is the lattice parameter of the hexago-
nal lattice and i=1,2 ,3. In the main features, Fig. 13 is simi-
lar to the corresponding figure for NiMnSb �Fig. 6�. Since
the As moment is antiparallel to the Mn moment, �As varies
in the interval from 180° to 90° instead of the interval from
0° to 90° in NiMnSb. For q=0, the dependence is linear
�As=180°−�Mn, since in this case, the magnetic structure
rotates rigidly. For small wave vector q1, the deviation of the
curve �As��Mn� from linearity is weak. With increasing q, the
deviation increases. For q=q3 corresponding to the azi-
muthal angle of 180° between the moments of the nearest
Mn atoms, the induced As moment keeps the direction par-
allel to the z axis for any �Mn. �At q=q3 and �Mn=90°, the

value of the induced As moment is exactly zero and, there-
fore, an arbitrary �As can be assigned at this point.�

The dependences of the values of atomic moments on �Mn
are presented in Fig. 14. Similar to the case of NiMnSb, the
magnitude of the Mn moment depends weakly on the devia-
tion angle. Therefore, Mn atoms possess a robust moment.
On the other hand, the behavior of the induced As moment is
unusual. Instead of decreasing with the decrease of the in-
ducing net moment of the Mn sublattice, the induced mo-
ment increases for small �Mn in both SF1 and SF2 calcula-
tions.

The peculiar behavior of the induced As moment corre-
lates with an unexpected feature in the angular dependence
of the total energy �Fig. 15�. Both self-consistent calculations
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give a decrease of the total energy for small �Mn compared to
the energy of the ferromagnetic state ��Mn=0�. On the other
hand, the force-theorem calculations result in the behavior
usual for a ferromagnetic system: the monotonous increase
of the energy with increasing �Mn. The qualitative difference
between the force-theorem and self-consistent data reveals
the specific properties of the Mn-As hybridization in hexago-
nal MnAs that are the reason for the unusual physical behav-
ior of this system.

The comparison of the SF1 and SF2 frozen-magnon ener-
gies �Fig. 15� leads to the conclusions similar to the conclu-
sions drawn above for NiMnSb. For small q, the SF1 and
SF2 curves differ strongly. The difference decreases with in-
creasing q and disappears for q=q3, since in the latter case,
the induced As moments are parallel to the z axis in both SF2
and SF1 calculations. The nonmonotonous dependence of the
total energy on �Mn cannot be described within a Heisenberg
model.

The difference in the frozen-magnon energies obtained
within different calculational schemes �Fig. 16� is reflected
in the calculated exchange parameters. Indeed, we find sig-
nificant increase in the first three exchange parameters �see
inset of Fig. 16�.

The consideration of the MFA-TC as a function of the
number of the coordination spheres �Fig. 17� brings another
unexpected result that is in strong contrast to the case of
NiMnSb �Fig. 10�. The convergence behavior of the Curie
temperature appears to be very different for the two systems.
In the FT calculation, TC saturates at the Mn-Mn distance of
about 2a similar to the case of NiMnSb. However, in the
self-consistent calculations SF1 and SF2, the behavior is
very different: A clear trend to the convergence of the Curie
temperature is obtained at a much larger value of about 6a.
In the SF1 scheme, the value of the Curie temperature drops
from 626 K at 2.5a to 433 K at 7a, which gives the decrease

by 30%. In the SF2 calculation, the decrease of the Curie
temperature in the same interval takes place between 520 and
321 K and reaches the value of 38%. Therefore, the self-
consistent account for the modification of the electron struc-
ture with the deviation of the atomic moments from the par-
allel directions increases the role of the longer-distance
interatomic interactions. This is a specific feature of the
-MnAs that is completely absent in the case of NiMnSb
where the convergence of the Curie temperature with respect
to the number of the coordination spheres taken into account
does not depend on the calculational scheme �Fig. 10�.

The Curie temperature as a function of �Mn used in the
evaluation of the exchange parameters is shown in Fig. 18.
The force-theorem calculation gives rather weak dependence
on �Mn. Therefore, -MnAs appears in the FT calculation as
a good Heisenberg system. However, the values of the Curie
temperature exceed strongly the experimental value of TC
that is estimated to be about 400 K. �Because of the magne-
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tostructural first-order phase transition at 313 K, the intrinsic
Curie temperature of the hexagonal MnAs is not reached
experimentally. The extrapolation of the magnetization curve
gives the value of about 400 K.�

In the case of SF1 and SF2 calculations, the character of
the �Mn dependence of the Curie temperature is cardinally
different. As a consequence of the canting instability, the
low-�Mn values of the exchange parameters underestimate
the trend to the ferromagnetism. This is reflected in the nega-
tive values of the MFA estimations of the Curie temperature
for �Mn=15° that reveals a strong contribution of the antifer-
romagnetic �negative� exchange parameters. The value of TC
increases strongly with increasing �Mn. In the whole �Mn in-
terval, the SF1 and SF2 curves lie below the corresponding
FT curves, giving the estimations of the TC that are closer to
the experiment than the FT values.

In agreement with general theorems, MFA-TC is smaller
than RPA-TC. The reliable RPA estimations of the Curie tem-
perature can be performed only for rather large values of
�Mn. This is again the consequence of the weak canting of the
magnetic ground state that leads to very small or even nega-
tive energies of some of the frozen magnons at small �Mn.
The RPA formula for the Curie temperature, Eq. �19�, con-
tains the reversed energies of the spin-wave excitations, and
the RPA value of TC is sensitive to the presence of such parts
of the magnon dispersion. As the canting of the ground state
is weak ��10° �, its influence becomes small for large �Mn

angles.
Similar to the case of NiMnSb, the values of the Curie

temperature for SF1 calculation are significantly larger than
the corresponding values for SF2 scheme. The reason for this
is the same as in the case of NiMnSb: The Mn-Mn exchange
parameters are enhanced by the Mn-As exchange interaction
that appears in the SF1 scheme as a contribution to the renor-
malized Mn-Mn exchange interactions.

In Fig. 18, we also present the results of the calculations
with the version of the ASW method that self-consistently
takes into account the nonspherically symmetric part of the
electronic potential in the atomic spheres. The calculations
are performed within the SF1 type of scheme where the di-
rections of the induced moments are fully relaxed to adjust
themselves to the frozen-magnon configuration of the Mn
moments �the results of this calculation are labeled with FP-
SF1 in Fig. 18�.

The comparison with experimental estimation of the Cu-
rie temperature shows that the best result is obtained within
the most advanced FP-SF1 scheme where the RPA value of
TC is close to the experimental TC for a broad interval of the
�Mn values.

Summarizing, -MnAs is the system with strong non-
Heisenberg features that appear clearly if one goes beyond
the force-theorem calculation of the interatomic exchange
parameters. Concerning the treatment of the induced As mo-
ments in the calculation of the Mn-Mn exchange parameters,
the best agreement with experiment is obtained within the
scheme where the induced moments are assumed to adjust
themselves to the adiabatic configurations of the Mn mo-
ments. In the case of NiMnSb, we come to an opposite con-
clusion that a better agreement with experiment is obtained
in the treatment where the induced moments were kept par-
allel to the magnetization axis.

VI. FURTHER COMMENTS

In this section, we comment on the limitations of the cal-
culational scheme and relate this work to the calculations by
Mryasov performed for FePt and FeRh.16

A. Limitations of the calculational scheme

The theoretical scheme used in this paper does not rely on
the use of adjustable parameters. A parameter-free descrip-
tion of multiple-sublattice systems is a complex physical and
computational problem that cannot be solved without ap-
proximations. Below, we list some of the important limita-
tions of our calculational scheme. Going beyond these limi-
tations can provide other insights into the properties of
magnetic systems with a significant role of induced mo-
ments.

First, the longitudinal fluctuations of the atomic moments
are not taken into account. The values of the moments are
calculated within a self-consistent procedure and characterize
the lowest-energy state corresponding to a given magnetic
configuration. The longitudinal fluctuations can be studied
with, for instance, the use of the so-called fixed-spin-moment
method �see, e.g., Ref. 30�. The examples of the statistical
mechanics calculations with account for longitudinal fluctua-
tions are reported in Refs. 3, 31, and 32.

Second, it is desirable to complete the MFA and RPA
calculations of the Curie temperature with Monte Carlo
simulations. The Monte Carlo simulations although much
more time consuming can, principally, provide an arbitrary
accurate estimation of the Curie temperature for a given
Hamiltonian.
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Third, in the calculation of the Curie temperature, the
atomic moments are treated as classical quantities. A consis-
tent account for quantum effects in the properties of atomic
moments in solids is a very complicated problem for systems
where the 3d electrons hybridize strongly with the sp elec-
trons of the environment. In theories using the functional
integral presentation of the free energy, the quantum effects
can be taken into account by means of introducing random
time-dependent fields and frequency dependent dynamic
susceptibilities.33

B. Comparison to Mryasov’s study on FePt and FeRh

It is useful to relate the calculational approach and physi-
cal conclusions of this paper to the studies of FePt and FeRh
reported by Mryasov.16 There are important common points
connecting the two works. Both works are dealing with sys-
tems where induced moments play a significant role and both
use the noncollinear magnetic configurations to evaluate ex-
change interactions.

Mryasov performed calculations for two types of noncol-
linear magnetic structures. First, the magnetic moments
within both Fe and Pt/Rh sublattices were kept parallel,
whereas the angle between the Fe and Pt/Rh moments var-
ied. The second type of the noncollinear configurations are
plane spiral structures that correspond to angle �=90° in our
notations �Eq. �2��. The calculations of the spirals were per-
formed for one direction in the wave-vector space. The total
energies were fitted with an effective Hamiltonian containing
bilinear and biquadratic exchange interactions between Fe
moments and the term depending on the length of the in-
duced moment. The values and directions of the induced
moments were determined by the effective Heisenberg-like
intersublattice exchange fields. The intersublattice interaction
of the Heisenberg type was not, however, included into the
Hamiltonian.34 It was shown that the Hamiltonian can be
rewritten in the form where the term depending on the value
of the induced moments appears as contributions to the ef-
fective interaction between inducing Fe moments. The im-
portance of the non-Heisenberg terms in the Hamiltonian is
discussed.

The treatment of the independent degrees of freedom by
Mryasov is similar to our treatment within the SF1 approach.
Both works come to the conclusion that if the induced mo-
ments are not considered as independent degrees of freedom,
their contribution to the energy of the system can be viewed
as a modification of the exchange interactions between in-
ducing atomic moments. Both studies establish the relation
between the induced moments and the non-Heisenberg be-
havior of the systems.

The calculations of the spin-wave dispersion and Curie
temperature of the FePt/FeRh systems with different treat-
ment of the induced moments are not reported in Ref. 16 and
constitute an interesting problem for further application of
the methodology used in this paper. An important difference
between NiMnSb and MnAs studied here and FeRh is a very
large induced moment on Rh that is close to 1�B. The large
value of the induced moment can have strong influence on
the features of the fluctuation spectrum of the system. For the
calculation of the Curie temperature, it is important to use
the model Hamiltonian that describes the properties of the
magnetic fluctuations with various directions of the wave
vectors. In our work, this aim is achieved by the calculation
for the spiral structures with the wave vectors sampling the
whole Brillouin zone.

VII. CONCLUSIONS

In this paper, we focus on the multiple-sublattice systems
where the sublattices can be unambiguously separated into
two different groups according to the ability to independently
support their magnetization and, as a consequence, according
to the role they play in the formation of the magnetization of
the system. The study of the thermodynamics of complex
itinerant-electron magnetic systems relies on the mapping of
the systems on the model Hamiltonians. We show that dif-
ferent treatments of the induced moments in the mapping
procedure lead to important qualitative and quantitative dif-
ferences in the calculated magnetic properties. This conclu-
sion is valid for systems that can be considered as good
Heisenberg magnets as well as for the systems that show
clear deviations from the Heisenberg behavior. We demon-
strate that the use of the force theorem can lead in complex
multisublattice systems to large errors in the calculated prop-
erties of the systems. For two systems considered, we sug-
gest that for NiMnSb, the consideration where the directions
of the induced moments are kept parallel to the magnetiza-
tion axis gives better agreement with experiment. On the
other hand, for MnAs, the best agreement with experiment is
obtained within the scheme where the directions of the in-
duced moments adjust themselves to the adiabatic configu-
ration of the Mn moments.

The consideration of a more general theory that contains
the SF1 and SF2 schemes of treatment of induced moments
as particular limiting cases is desirable. Such a theory should
take into account the effects of dynamics and longitudinal
fluctuations and help formulate a criterion for an a priori
decision on the optimal treatment of the induced moments.
In this respect, the main result of this paper is a contribution
to the better formulation of the questions rather than provid-
ing final answers.
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