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An approach for computing scanning tunneling microscopy from first principles is proposed. Within the
framework of Landauer-Büttiker theory, the conductance of a scanning tunneling microscope �STM� is ob-
tained in terms of real-space Green functions, thereby taking into account incoherent tunneling processes and
the tip-sample interaction but avoiding repeated STM tips as in a supercell approach. The approach is formu-
lated within multiple-scattering theory, especially in the Korringa-Kohn-Rostoker method, but can be imple-
mented in any Green-function method for electronic-structure calculations. Extensive tests are presented for
planar and STM tunnel junctions involving Au�111� electrodes.
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I. INTRODUCTION

The invention of the scanning tunneling microscope
�STM� by Binnig and Rohrer �see Ref. 1 for a review� was a
revolution in surface physics. The ability to probe locally
surfaces and adsorbates on the atomic scale led to new ex-
perimental methods and new insights that were impossible to
obtain by other advanced methods �such as photoelectron
spectroscopy or low-energy-electron diffraction�.2 In order to
interpret STM experiments qualitatively and quantitatively,
there have been numerous efforts to formulate a theory of the
STM,3 preferably within the framework of first-principles
electronic-structure calculations.

The probably most widely used model was proposed by
Tersoff and Hamann4,5 �TH� who, applying the transfer-
Hamiltonian approach of Bardeen,6 express the tunnel cur-
rent by the density of states of the sample at the position of
the STM tip. By this means, the tunnel current becomes in-
dependent of the electronic properties of the tip. This feature
obviously contradicts experiments that find indeed a depen-
dence of the tunnel current on the tip and its preparation
conditions. Astonishingly, the TH model works well pro-
vided the surface density of states is computed by advanced
first-principles methods, such as the full-potential linearized
augmented plane wave or the full-potential Korringa-Kohn-
Rostoker �KKR� method.7 For example, the corrugation and
the magnetic contrast in spin-resolved STM �see, e.g., Ref.
8� agree qualitatively and semiquantitatively with experi-
mental results �without any claim of completeness, we refer
to Refs. 9–14�.

However, the TH model approximates crudely the tunnel
matrix elements that can essentially determine the tunnel cur-
rent. A step beyond the TH model is the transfer-Hamiltonian
approach in which the matrix elements are computed from
the wave functions of the sample and the tip.15,16 In order to
distinguish unequivocally the tip wave function from the
sample wave function, the entire tunnel junction is divided
into two subsystems, namely, the sample and tip, and the
electronic structures of these subsystems are calculated sepa-
rately. Therefore, tip-sample interactions, which might be
significant for small tip-sample distances, are not included.17

Both of the above-mentioned theories rely solely on the
electronic structures of sample and tip but neglect the bound-

ary conditions, in particular reservoirs attached to the leads.
Tunneling is a scattering process and, hence, scattering
boundary conditions have to be applied, as is done in the
Landauer-Büttiker theory of electronic transport. Within this
respect, the conductance of a tunnel junction can be viewed
as transmission.18 One particular way to obtain the transmis-
sion probability can be regarded as the “electron-counting”
picture: the conductance is proportional to the rate at which
electrons are transmitted from one lead to the other. To ob-
tain this rate, the electrons in the reservoirs are counted be-
fore and after establishing a connection of the otherwise dis-
connected leads. This approach can be formulated via the
Green functions of the decoupled and coupled subsystems
�see Sec. II C�.

The above Landauer-Büttiker approach has a number of
advantages as compared to other approaches. �i� It considers
the role of reservoirs and obeys scattering boundary condi-
tions. �ii� The electronic structures of both leads and tunnel
barrier are fully taken into account. Since an ab initio calcu-
lation is performed for the entire tunnel junction, the effect
of tip-sample interactions is fully accounted for, in contrast
to the Bardeen approach. �iii� By solving the Dyson equation
for the STM tip in real space �configuration space�, a system
with a single tip is treated. This feature is different from
supercell approaches in which an artificial periodicity might
lead to spurious errors due to “cross talk” between adjacent
STM tips.19,20 �iv� It can be implemented in a variety of
methods for electronic-structure calculations which rely on
Green functions, in particular tight-binding and multiple-
scattering methods. We note in passing that Green functions
provide a means to incorporate substitutional disorder via the
coherent potential approximation.21–23

In order to implement the outlined approach for a STM, a
computational scheme is needed that can deal with large
systems.24 Besides tight-binding methods, multiple-
scattering theory is an obvious choice. �We would like to
mention explicitly the tight-binding or screened versions of
the KKR method25–28 and of the linear muffin-tin orbital
method.29� The latter has proven its suitability for treating a
variety of problems with high accuracy; to name a few, bulk
and surface electronic properties, electron spectroscopies
such as low-energy-electron diffraction and photoelectron
spectroscopy, substitutional disorder in alloys, etc.30 The ac-
curacy, as high as for other advanced methods, is evident, for
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example, from computations of the magnetic anisotropy of
ultrathin films31,32 and of the dispersion of surface states.33,34

With this background in mind, a multiple-scattering theory of
scanning tunneling microscopy was implemented in a spin-
polarized relativistic layer KKR computer code, which is de-
scribed and applied in the present paper. Although the num-
ber of advantages is significant �see previous paragraph�, no
approach is, of course, without shortcomings. These are dis-
cussed in Sec. II D. We would like to emphasize that the
approach is not restricted to tunneling through a vacuum
barrier; transport in nanocontacts �e.g., atomic point contacts
or nanowires� can be treated as well.

The paper is organized as follows. The basic theory is
outlined in Sec. II, sketching a KKR formulation of the con-
ductance calculations in real space. The scheme is applied to
scanning tunneling spectroscopy on Au�111�,35,36 addressing
in particular the effect of a STM tip on the conductance. The
paper concludes with remarks given in Sec. IV.

II. THEORY

A. Introductory remarks

Since the following sections are rather technical, it ap-
pears helpful to start with a brief outline of the approach. A
scanning tunneling microscope can be viewed as built from
three subsystems: the ideal leads of the sample and of the tip
side, respectively, and the tunnel barrier, which comprises
the STM tip and the lead surfaces. These subsystems are
joined at so-called decoupling—or coupling—regions L and
R �L and R stand for the left and right decoupling regions,
respectively�. Since Landauer-Büttiker theory will be ap-
plied, for each of the steps discussed below two Green func-
tion �GFs� have to be computed: one for the system with
decoupled subsystems, the other for the system with coupled
subsystems �cf. the electron-counting picture mentioned in
Sec. I�.37 The conductance of the STM is computed in real
space from the final GFs.

The computational procedure is as follows. �i� Green
functions are computed in reciprocal space for tunnel junc-
tions with decoupled and coupled subsystems. These systems
do not include the STM tip and, thus, are translationally
invariant parallel to the layers. Hence, the in-plane wave vec-
tor k� is a good quantum number. �ii� These Green functions
are expressed as real-space GFs in a finite cluster, i.e., for a
finite number of unit cells in each layer, using lattice Fourier
transformation. �iii� Regarding the STM tip as a local pertur-
bation �loosely speaking a “defect” or “impurity”�, the STM
tip is eventually introduced by solving the Dyson equation
for the defect potentials �that form the STM tip� in the clus-
ter. Hence, translational invariance is lost. �iv� The conduc-
tance in the finite cluster around the STM tip is computed
from the GFs obtained in step �iii�.

The transformation from reciprocal to configurational
space is necessary because the conductance is obtained for a
tunnel junction with a single STM tip �no translational in-
variance�. In contrast, a supercell approach computes in re-
ciprocal space the conductance of infinitely repeated cells,
each containing a STM tip. Both approaches become equiva-
lent in the limit of infinitely large supercells.

B. KKR Green functions

The following derivations and considerations rely heavily
on KKR theory. For brevity, the reader is referred to Refs.
38–40 and 30 for details. A brief introduction to typical layer
KKR algorithms is given in Ref. 41.

For simplicity we restrict ourselves to the case of one
atom per layer unit cell. It is straightforward to extend the
theory to more atoms per cell. Note that in layer KKR
�LKKR� method all layers have identical sets �Ri� of trans-
lation vectors, so these need not be indicated by a layer in-
dex. In the following, layers and cells are denoted by upper-
case and lower-case letters, respectively. Further, the
complex “energy” z at which the GFs are evaluated is
dropped.

The starting point is a system that is translationally invari-
ant parallel to the layers, that is, it has two-dimensional �2D�
periodicity �no STM tip�. Hence, the electronic states are
characterized by the in-plane wave vector k�. A KKR Green
function G comprises two parts, a single-site part and a
multiple-scattering part. The compact form of the single-site
part is explicitly given by

�
�

	r�
0I
Z�

R0I�	J�
L0I
r��

0I�

� �
�
	r0I
Z�

R0I�	J�
L0I
r�0I� , r0I � r�0I,

	r0I
J�
R0I�	Z�

L0I
r�0I� , r0I � r�0I,
�1�

where r0I is a vector within unit cell 0 of layer I. r�
0I �r�

0I�
denotes the smaller �larger� of r0I and r�0I. The spin-angular
multi-indices � comprise the angular momentum and spin
quantum numbers, e.g., �= ���� in the relativistic case42,43

or �= �lm�� in the nonrelativistic case. 
Z�
R0I� and 
J�

R0I� are
right-hand-side �RHS� �superscript R� regular and irregular
scattering solutions of the �muffin-tin� potential located in
cell 0 of layer I, respectively. The corresponding LHS scat-
tering solutions are superscribed by L.44

The propagation of an electron from cell 0 in layer J to
cell 0 in layer I is mediated by the scattering-path operator,
with matrix elements ����

0I;0J. It accounts for all scattering
paths within the system. The complete GF then reads

G�r0I,r�0J;k�� = �
���

	r0I
Z�
R0I�����

0I;0J�k��	Z��
L0J
r�0J�

− �
�

	r�
0I
Z�

R0I�	J�
L0I
r��

0I�	0I;0J. �2�

The Kronecker 	 means 	iI;iJ=	ij	IJ. Note that the GF obeys
the Bloch theorem,

G�riI,r�0J;k�� = eik�·R
i
G�r0I,r�0J;k�� , �3�

for any translation vector of the layer lattice. Ri is the trans-
lation vector from cell 0 to cell i, and riI=r0I+Ri.

To shorten the notation, scattering solutions and
scattering-path operators are combined into vectors and ma-
trices indexed by �,

�ZR0I�� � 
Z�
R0I� , �4a�
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�ZL0I�� � 	Z�
L0I
 , �4b�

��0I;0J�k������ � ����
0I;0J�k�� . �4c�

Note that ZR0I �ZL0I� is a column �row� vector. Hence, Eq. �2�
becomes

G0I;0J�k�� = ZR0I�0I;0J�k��ZL0J − ZR0IJL0I	0I;0J. �5�

Having determined the reciprocal-space GF of the trans-
lationally invariant system, it is transformed into real-space
representation using the lattice Fourier transformation,

�iI;jJ =
1



�

2BZ
eik�·�Ri−Rj��0I;0J�k��d2k� . �6�


 is the area of the two-dimensional Brillouin zone �2BZ�.
The inverse Fourier transformation is given by

�0I;0J�k�� =
1

T
�
ij

e−ik�·�Ri−Rj��iI;jJ, �7�

where T is the order of the translation group of the layer
lattice. The real-space GF then reads

GiI;jJ = ZR0I�iI;jJZL0J − ZR0IJL0I	iI;jJ �8�

and obeys

G�i+1�I;�j+1�J = GiI;jJ �9�

due to 2D translational invariance.
In the final step of the computation of the GF, the STM tip

is introduced. If we consider the STM tip as a local pertur-
bation �i.e., a defect or an impurity�, it alters the scattering
potentials in a finite region in the vicinity of the tip and,
hence, breaks the translational invariance parallel to the lay-
ers. Note in particular that the potentials of the leads, i.e., far
away from the tunnel barrier, remain unchanged. Thus, the
defect region, denoted by D, comprises a finite set of cell �l�
and layer �L� indices �D= �lL� is located between L and R,

all regions being disjunct�. The Green function G̃ of the sys-
tem with STM tip is obtained from the Dyson equation,

G̃ = G + G�VG̃ , �10�

where �V is the potential of the perturbation �quantities of
systems with the STM tip are decorated by a tilde�. This
equation translates in the KKR formalism to

G̃iI;jJ = GiI;jJ + �
lL�D

GiI;lL�t̃lL − tlL�G̃lL;jJ, �11�

which can be solved exactly.45 t̃lL and tlL are the single-site
scattering matrices of the systems with and without STM tip,
respectively. In contrast to Eq. �8�, the scattering solutions in

G̃ carry a cell index because the potentials, the scattering
solutions, and hence the single-site scattering matrices, de-
pend on the cell,

G̃iI;jJ = Z̃RiI�̃iI;jJZ̃LjJ − Z̃RiIJ̃LiI	iI;jJ. �12�

Eventually, the Green functions G̃ for the decoupled and the
coupled systems are used to compute the conductance of the
STM.

C. Computation of the conductance

For the computation of the conductance of the STM,
Landauer-Büttiker theory is applied. Within the electron-
counting picture of transport, the conductance C of the STM
junction is obtained from the transmission probabilities of all
scattering channels incoming in one lead and outgoing in the
other lead,18

C�V� = G0��V� , �13�

where V is the applied bias voltage. The conductance quan-
tum G0=e2 /h is the inverse von Klitzing constant �i.e., the
quantum of resistance, RK�25.8 k
�. The total transmit-
tance ��V� comprises the transmission probabilities in the
“energy window of tunneling” opened by V.46 For zero bias
voltage �V=0, linear response�, which is the case considered
in this paper, only the transmittance at the common Fermi
energy EF of the two leads needs to be considered. Since the
energy is fixed in the following, it is dropped in the equa-
tions.

The transmission probabilities can be computed from the
GFs of a system in which the tunnel barrier is first decoupled
from the leads and subsequently coupled to the leads. Within
a tight-binding approach, the decoupling can be achieved by
setting the hopping matrix elements between barrier and
leads to zero.47,48 Or an “impermeable membrane” between
the two leads could be erected.49 In the KKR approach,
where the scattering potentials can easily be accessed, the
decoupling can be achieved by erecting high potential walls
of sufficiently large width between leads and tunnel barrier.37

Although a residual coupling remains, tuning the height and
width of the potential walls allows conductances to be ob-
tained as accurately as in other sophisticated KKR
approaches.50

The decoupling regions in which the potential walls are
erected are denoted by L and R �Fig. 1�. The real-space

FIG. 1. �Color� Schematic representation of a STM. The left part
shows the sample electrode, with the decoupling region L in green.
The STM tip with its lead and its decoupling region R �also in
green� is shown on the right. The closed-path summations in Eq.
�19� are performed over all pairs of sites in the decoupling regions.
One such closed path is shown in red. The site potentials of the
decoupled and the coupled systems differ only in the two decou-
pling regions.
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Green function of the system with the tunnel barrier decou-
pled from the leads is given by �subscript “dc”�

G̃dc
iI;jJ = Z̃dc

RiI�̃iI;jJZ̃dc
LjJ − Z̃dc

RiIJ̃dc
LiI	iI;jJ, �14�

with scattering-path operator �̃. Analogously, that of the
coupled system �subscript “c”� reads

G̃c
iI;jJ = Z̃c

RiI�̃iI;jJZ̃c
LjJ − Z̃c

RiIJ̃c
LiI	iI;jJ, �15�

with scattering-path operator �̃.
For a translationally invariant system �e.g., a planar tunnel

junction; cell index in principle unnecessary� the transmit-
tance ��k�� at a particular wave vector can be obtained from

��k�� = �
IJ�L

�
KL�R

�IJ;KL�k�� , �16�

with

�IJ;KL�k�� = �t0I��0I;0J�k�� − �0J;0I�k��†��t0J†�0J;0K�k��

 �t0K��0K;0L�k�� − �0L;0K�k��†��t0L†�0I;0L�k��†.

�17�

Here, �t0I is the difference of the single-site scattering ma-
trices of the coupled and the decoupled system. The summa-
tion runs over all layers in the decoupling regions L and R.
Note further that the above matrices have to be obtained very
close to the real energy axis, that is, the side limits of the
GFs have to be considered.38

Equations �13�, �16�, and �17� are the KKR analog to the
Landauer conductance formula51

C = G0 Tr�Im��L�G Im��R�G†� , �18�

where the Green function G propagates an electron from the
right to the left lead. This is accomplished in KKR theory by
the scattering-path operator �SPO� � in Eq. �15�. The self-
energies �L and �R account for the decoupling of the leads
and the barrier. Their imaginary parts translate in the KKR
approach into terms like �t0I��0I;0J�k��−�0J;0I�k��†��t0J† �cf.
Eq. �17��.

It is straightforward, using the lattice Fourier transform
�Eqs. �6� and �7��, to obtain an expression for the conduc-
tance in real space. For � one gets

� =
1

T
�

iI;jJ�L
�

kK;lL�R
�tiI��iI;jJ − � jJ;iI†��t jJ†� jJ;kK�tkK

��kK;lL − �lL;kK†��tlL†�iI;lL†. �19�

The prefactor 1 /T appears due to the translational invariance,
implying that � is the transmittance per cell. Note further
that any scattering-path operator for this system obeys �iI;jJ

=��i+1�I;�j+1�J. We would like point out that each term in the
above sum specifies a closed path in real space �Fig. 1�.

The loss of translational invariance �due to the STM tip�
imposes the question of how to identify the effect of the
STM tip on the conductance, as compared to that of a planar
tunnel junction �PTJ�. For a translationally invariant system,
namely, a PTJ, one defines a transmittance per cell, as in Eq.
�19�. Evidently, the total transmittance is infinite due to the
infinite number of cells through which the current flows. Ac-

cordingly, the total transmittance of a STM is infinite, too.
In order to identify uniquely the difference of the conduc-

tances of the STM and PTJ we proceed as follows. The sums
in Eq. �19� run over the infinite number of cells in regions L
and R. The real-space cluster cuts out a finite subset of the
infinite cell set, denoted by C. Hence, the total transmittance
of a PTJ can be expressed as

�tot = ��C� + ��C̄� . �20�

��C� comprises all conductance paths that lie within C �Fig.

1�, whereas ��C̄� contains all other paths. With Eq. �19�, one

has �tot=T�, and both �tot and ��C̄� become infinite if the
order of the translation group T→�. For a STM one has
accordingly

�̃tot = �̃�C� + �̃�C̄� . �21�

If the cluster C is sufficiently large �which needs to be
checked by convergence tests; see Sec. III A�, one has

�̃�C̄����C̄�. The transmittance difference, that is, the ef-
fect of the STM tip, is then given by

�� = �̃tot − �tot � �̃�C� − ��C� . �22�

The knowledge of both �� and � from Eq. �19� allows one
to investigate the effects of tip-sample interaction and of
electronic states localized at the STM tip. We note in passing
that �� can be calculated directly from the transmittances �

and �̃ of the PTJ and the STM. Another way is to express
�� in terms of the Green function of the barrier �with SPOs
�̃ and ��, since these are related by a Dyson equation for the
STM tip region �similar to Eq. �11��, and use that expression
in the numerical computation. In the present paper, the con-
ductance of the STM is obtained from Eqs. �19� and �22� but
for the SPOs and single-site t matrices obtained by solving

the Dyson equation for the tip region, that is, with �̃, �̃, etc.

D. Discussion of approximations

The proposed approach relies on the 2D lattice Fourier
transformation, in order to compute the real-space KKR
Green function. This implies that a 2D periodicity is inherent
to the entire system, including both electrodes. In other
words, each layer has to have identically shaped unit cells.

In a practical computation, several restrictions apply due
to limitations of computer memory and computation time. A
first problem is the accurate determination of the real-space
GFs from the reciprocal-space GFs �Eqs. �6� and �8��. Re-
gardless of whether an equidistant k� mesh, for example spe-
cial points,52 or an adaptive integration method53 is used, for
a correct description of the electronic structure the number of
k� needed is on the order of several 1000 to several 10 000
wave vectors. Note in this respect that KKR GFs have to be
computed for complex energies, the imaginary part of which
is chosen on the order of meV or �eV.

A second problem appears due to the finite size of the
real-space cluster C. In principle, the conductance of the
entire surface-tip system needs to be computed, which is
obviously impossible. Thus, the summations in Eq. �19� over
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L and R have to be restricted to a finite cluster C surround-
ing the STM tip, the size of which has to be determined by
convergence tests �see also Ref. 54�. A finite cluster is suffi-
cient because in a STM the current flows almost exclusively
through the STM tip �“eye of the needle”� and proceeds in a
cone with finite opening angle.55–58 The other regions �which
can be viewed as parts of a planar tunnel junction with a
wide vacuum barrier� contribute much less to the conduc-
tance. This will be elucidated by the convergence tests pre-
sented in Sec. III A.

The Landauer-Büttiker theory assumes the transmission
of Bloch states of the leads �scattering boundary conditions�
computed infinitely far from the tunnel junction. Here, a
third problem arises from the fact that the summation over
the decoupling regions L and R in the conductance calcula-
tion is not performed infinitely far from the tunnel barrier but
typically rather close to the surface of the leads �Fig. 1�.54

Thus, the conductance might be influenced by the surface
electronic structure, in particular by surface states which de-
cay slowly toward the bulk �as is, for example, the case34 for
Au�111��. The effect of the surface electronic structure can
be determined by comparing the conductances for the planar
tunnel junction �without STM tip� obtained with the Bloch-
wave transmission approach by MacLaren and co-workers50

�which by construction does not include surface contribu-
tions� and the present approach.

Since the decoupling is achieved by potential walls of
finite height in a finite number of layers, there remains a
residual coupling which in principle can be made negligibly
small. It turns out that typically a minimum of four layers
with potentials of 2 Hartree height are sufficient. Note that
the decoupling can be checked by computing the conduc-
tance of a bare lead, i.e., a system entirely built of a single
ideal lead. In this case, the transmission probability must
equal the number of scattering channels �Sharvin
conductance59�.

Another problem when implementing a new approach is
to test its accuracy. For planar tunnel junctions, we have
implemented the Bloch-wave transmission approach,50 an
approach based on the Kubo-Greenwood formula for the
conductivity tensor,60–62 and the present GF approach in our
modular LKKR computer code.37 It was shown for the
former and latter approaches that these give almost identical
results, even for complex systems �e.g., Fe /MgO /Fe with
FeO interfaces�.63 The latter method37 is the basis for the
real-space STM approach presented here. The LKKR com-
puter code was extended to deal with clusters in real space
and with the Dyson equation. All these parts were cross
checked with other KKR codes and tested for other compu-
tational modes �such as, for example, Bloch spectral densi-
ties and density of states�.

Recently, a GF approach for the STM was implemented
by Blanco et al. �see Ref. 20 and references therein�. Al-
though similar to the approach presented here, it relies on a
slab calculation involving supercells rather than treating
semi-infinite leads and a single STM tip. An advantage of
that implementation is that relaxations of both the surface
and the tip atoms can be taken into account. In favor of our
approach, we would like to note that, in principle, relaxations
can be treated as well by solving a Dyson equation for the

atoms displaced from their ideal positions �see, for example,
Refs. 64 and 65�. This would allow to investigate the effect
of tip-induced relaxations on the tunneling conductance.66,67

A nonequilibrium Green function approach for calculating
the electronic transport of atomic-scale systems was de-
scribed by Brandbyge et al.68 The scattering region is defined
within a finite supercell and consequently the GF matrix
might not be sufficiently large to minimize interference ef-
fects. The latter are induced by the repeated images of the
STM tip. However, the indisputable advantage of this
method is that the charge-density matrix is clearly expressed
in two parts, i.e., an equilibrium and a nonequilibrium con-
tribution. The technique can thus be extended to multitermi-
nal devices.

In the present work we focus on the conductance for zero
bias voltage. An extension to finite bias could be performed
within the framework of nonequilibrium Green functions or
by assuming a heuristic voltage drop within the vacuum bar-
rier �typically a linear dependence, as, e.g., in Refs. 46 and
69–71�. Both approaches have already been applied success-
fully. In particular, it can be shown that a multiple-scattering
theory based on nonequilibrium Green functions systemati-
cally corrects the Bardeen formalism for nonzero bias
voltage.72 The latter allows, in particular, the sample and the
tip contributions to the conductance to be distinguished,73 as
opposed to the Landauer-Büttiker formalism.

E. Size and shape of the real-space cluster

A conductance calculation for a tunnel junction �either a
planar or a STM junction� is computationally demanding.
But if the chosen method is a real-space approach it is even
more demanding. Therefore, it is desirable to reduce the
number of cells in the cluster as far as possible but without
perceptible loss of accuracy. Further, the shape of the cluster
has to be chosen appropriately, keeping in mind the “bottle-
neck” picture behind the STM tip. By this means a lot of
computer memory and computational time can be saved.

A cluster with rhomboidal cross section �top in Fig. 2� has
two basic shortcomings. Considering the cone-shaped elec-
tron flux through the tip, cells far away from the tip position
�in particular those at the corners� do not contribute signifi-
cantly to the conductance and, hence, can be neglected if the
cluster is sufficiently large. On the other hand, if the cluster
is not large enough, important contributions may be missed,
especially from cells at edge centers. These drawbacks can
be overcome if the cluster accounts for the cone-shaped elec-
tron flux through the STM tip, in particular by taking a clus-
ter with circular cross section �bottom in Fig. 2�.

Another important point concerns the set of layers for
which the Green functions have to be explicitly computed. In
view of the above derivation �Secs. II B and II C�, only a few
layers in the decoupling regions �for computing the conduc-
tance� and the layers of the STM tip �for solving the Dyson
equation� have to be considered.

Both improvements are implemented in our object-
oriented layer KKR computer code. The sets of cells can be
chosen differently for each layer. For a typical setup the total
number of cells is reduced from about 1936 for the full real-
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space cluster to 264 for the improved one. This corresponds
to a reduction of computer memory from about 25 to about
1.2 Gbytes.

F. Computation

The electronic properties of the tunnel junctions discussed
in Sec. III were obtained within the local spin-density ap-
proximation to density-functional theory, using a multicode
approach. The ab initio calculations are performed with the
KKR code HUTSEPOT, details of which can be found in Refs.
74–77. The generated self-consistent potentials serve as in-
put for the conductance calculations, using the spin-polarized
relativistic layer KKR code OMNI2K. The latter is focused on
the computation of electron spectroscopy, rather than on per-
forming ab initio calculations. It solves the Dirac equation
for the single-site problem, and spin-orbit coupling is in-
cluded in both the electronic-structure and the transport cal-
culations.

Self-consistent computations were performed for a planar
tunnel junction comprising two semi-infinite Au�111� elec-
trodes separated by four layers of vacuum �see inset in Fig.
7�. The potential in the vacuum region is described by
muffin-tin spheres �empty sites�, as for Au atoms. These
computations proceeded like those for the bare Au�111� sur-
face, details of which can be found in Ref. 36. However,
tunneling through a junction imposes additional problems, so
more computational details are in order.

The crystal potentials are represented in the atomic sphere
approximation �ASA�, in which the atomic spheres associ-
ated with each scatterer fill the configurational space �real
space� but overlap. Although the crystal potential is in prin-
ciple described better than in the muffin-tin approximation
�MTA� with nonoverlapping spheres, the overlap results in

an incorrect �additional� scattering of the electrons. To over-
come this problem, we used the so-called ASAMT
approach.78 This approach corrects for the additional scatter-
ing contributions. It relies on overlapping atomic spheres in
the calculation of the kinetic energy, similar to the ASA.
However, a shape correction is utilized which has the same
form as in the MTA treatment of the interstitial. The inter-site
Coulomb energy is evaluated using the Madelung energy as
computed in the MTA while the on-site Coulomb energy is
calculated using the ASA. The Madelung potential is ob-
tained by a two-dimensional Ewald procedure79 for semi-
infinite lattices with proper boundary conditions �that is, two
semi-infinite bulk materials which represent the electrodes�.
If the two leads are made of different materials, the Made-
lung potential is adjusted to an electrostatic dipole barrier
which is related to the associated Fermi levels.

The potentials are spherically symmetric within the
atomic spheres in both the electrodes and the vacuum barrier
region. This shape approximation might result in an inaccu-
rate description of the surface electronic structure, in particu-
lar at the STM tip �see, e.g., Ref. 80�. Although implemented
in both KKR codes, a full-potential approximation was not
applied due to a substantial increase of computation time. We
would like to recall that even spherically symmetric poten-
tials allow accurate description of the electronic structure of
strongly corrugated surfaces, such as of the ordered surface
alloy Bi /Ag�111�.81

The STM tip consists of four Au atoms placed in a tetra-
hedron on top of one of the Au�111� surfaces of the PTJ
�Fig. 2 and insets in Fig. 7�. The positions of the tip atoms
are those of the fcc parent lattice, with the apex atom sup-
ported by three atoms �we note in passing that the tip shape
influences the differential conductance; e.g. Refs. 73 and 82�.
The tip-sample distance is two layers �i.e., 4.86 Å; PTJ, four
layers�, resulting in a much larger conductance than for the
PTJ. Based on the self-consistent calculation for the PTJ, the
potentials of the STM junction were obtained by solving the
Dyson equation in a 3D cluster around the tip. The herring-
bone reconstruction of the Au�111� surface is not
considered.83

Self-consistent calculations have to be performed only for
the coupled systems. The potentials of the decoupling walls
in L and R �green in Fig. 1� can be taken as constant in the
muffin-tin spheres. Since scattering boundary conditions ap-
ply, the calculation is performed for the tunnel junction em-
bedded between the semi-infinite leads.37

The results of the self-consistent electronic-structure cal-
culations serve as input for the conductance calculations.
Several methods for computing the ballistic conductance are
implemented in our KKR codes, allowing validation of the
proposed approach. Further, the dependence of the conduc-
tance on free parameters �e.g., the number of k� used in the
2BZ integration� could be checked. All results presented in
Sec. III were obtained for zero bias and for real-space clus-
ters with a circular cross section �Sec. II E�. The regions L
and R were chosen four layers wide, covering the outermost
Au surface layers, and found to provide sufficient decoupling
with potential walls of 2 Hartree height. The entire junction
comprises 16 layers in total, six for each Au lead and four for
the tip-vacuum region. Summations over the 2BZ involve
about 10 000 wave vectors.

(a)

(b)

FIG. 2. �Color� Clusters with two different lateral shapes �sche-
matic�. In each layer, a cluster has either a rhomboidal �top� or a
circular cross section �bottom�. The STM tip consists of four atoms.
Layers appear shifted in accordance with the . . .ABCABC. . . stack-
ing in the �111� direction of the fcc parent lattice and are distin-
guished by color.
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III. APPLICATION TO TUNNEL JUNCTIONS WITH
Au„111… ELECTRODES

In order to show the reliability of the proposed approach
for calculating the conductance of a STM, we choose tunnel
junctions with Au�111� electrodes as an example. Besides a
planar tunnel junction, which comprises the two Au�111�
electrodes and four layers of vacuum as tunnel barrier, a
STM with Au�111� electrodes and a four-atom tip �tetrahe-
dron� is investigated �see insets in Fig. 7�.

A. Convergence with respect to cluster size

An important approximation in the proposed method is
that the conductance is computed in a finite-sized cluster C
around the STM tip �Eq. �19� and Sec. II D�. The method has
to be rendered unusable if the conductance does not con-
verge with increasing number of cells within the layers.
Therefore, the convergence of the transmittance has to be
checked by increasing the lateral size of the real-space clus-
ter C.

Two energies are considered. The first, 0.2 eV below the
Fermi level �EF�, is within the energy range covered by the L
gap surface state present at the bare Au�111� surface. Note
that this surface state has a band minimum at EF−0.5 eV and
shows parabolic dispersion.84 The other energy, 1.0 eV be-
low EF, accounts only for Au bulk states. For both energies,
the transmittance �� �Eq. �22�� plotted versus number of
cells within a layer of the tunnel junction starts to increase
almost linearly and saturates at about 190 cells per layer
�Fig. 3�. In order to find the converged values ��� of ��,
the curves are fitted to ���x�=���−a exp�−bx� �red in Fig.
3�, where x is the number of cells per layer. From the fits we
obtain ���=0.000 543 and 0.000 173 for EF−0.2 eV and
EF−1.0 eV, respectively �indicated by green asterisks�. Our
finding corresponds nicely to the trend observed in Ref. 54.

The trend can be understood by considering the cone-
shaped flux through the STM tip as follows. Areas far apart
from the STM tip can be regarded as planar tunnel junctions,

the electrodes of which are separated by four vacuum layers.
In contrast, the tip-sample separation at the apex atom of the
STM tip is only two layers. Hence, the contribution of the
area around the STM tip to the conductance is much larger
than that of the remainder of the system �although its area is
much larger�. That can be understood by the exponential de-
crease of the transmittance through a tunnel barrier with in-
creasing electrode separation. Due to scattering at the tip
atoms, the current flows in a cone with moderate opening
angle, the cone being centered about the apex atom of the tip.
�A similar behavior is found in quantum point contacts.55�
For a converged conductance, the summation over the cells
in L and R �Eq. �19�� has to cover at least the cross section of
the cone.

B. Effect of the STM tip on the sample

An advantage of the present approach is that the tip-
sample interaction is fully accounted for by considering the
electronic structure of the entire tunnel junction, as opposed
to the Tersoff-Hamann and transfer-Hamiltonian approaches.
Therefore, we consider in the following the effect of the
STM tip on the electronic structure of the sample. Tip-
induced relaxation, which might be important,85 is neglected
so far.

The effect of the STM tip on the electronic structure can
be investigated by means of the local density of states
�LDOS�,

NiI�E� = −
1

�
lim

�→+0
Im Tr GiI;iI�E + i�� , �23�

where iI specifies the cell �atom� i in layer I. The spatial
integration included in the trace Tr is over the corresponding
cell. The LDOS induced by the STM tip is then

�NiI�E� = ÑiI�E� − NiI�E� , �24�

that is, the LDOS difference between the systems with and
without the STM tip.

The induced LDOS of the surface layer of the sample is
shown in Fig. 4. In the outer region, the LDOS is that of the
bare surface �no STM tip�, depicted in blue. In the center, the
STM tip induces an increased LDOS that reflects the three-
fold symmetry of the tip �note the tetrahedral arrangement of
tip atoms�. The induced density is, however, very small
�about 5.510−5 states /Hartree� and can be neglected for
the chosen system. The tip-sample interaction may become
significant for reduced tip-sample distances or for transition
metal surfaces �instead of noble metal surfaces�.

The induced local density of states of the STM tip is
displayed in Fig. 5. In the layer that contains the apex atom,
the LDOS is almost zero everywhere �blue in the top panel�,
except at the apex atom itself. The supporting layer com-
prises three Au atoms that result in a triangular-shaped dis-
tribution �middle panel�. This shape is maintained in the sur-
face layer of the tip electrode �bottom panel�, with an
increase of about 2 states /Hartree as compared to that of the
bare surface �dark blue�. Note that this increase is much
larger than that induced on the sample electrode �Fig. 4� due

50 100 150 200
Number of cells/layer

0

0.0001

0.0002

0.0003

0.0004

0.0005

T
ra

ns
m

is
si

on
E = E

F
-0.2 eV

E = E
F

-1.0 eV∆Θ

FIG. 3. �Color online� Transmittance �� of a Au�111� STM
junction versus number of cells per layer in regions L and R �cf.
Eqs. �19� and �22�� for two energies E=EF−0.2 eV �circles� and
EF−1.0 eV �squares�. Both curves are fitted to ���x�=���

−a exp�−bx� �red�, where x is the number of cells per layer. Both
values of ��� are represented by green asterisks.
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to direct contact with the STM tip. It turns out that the effect
of the STM tip on the electronic structure is strongly local-
ized laterally, thereby supporting the cone-shaped flux argu-
ment given above.

C. Effect of the STM tip on the conductance

Localized electronic states, such as surface states or states
at the STM tip, can play a crucial role in tunneling. Depend-
ing on the underlying theory of tunneling, these either con-
tribute to the conductance �e.g., in transfer-Hamiltonian ap-
proaches� or do not contribute �e.g., in the Landauer-Büttiker
�LB� approach for a PTJ�. A reason is that the LB theory
describes coherent tunneling whereas the Bardeen approach
describes incoherent tunneling �a comparison of both ap-
proaches for planar tunnel junctions is given in Ref. 86�. In
this section, we investigate the effect of the STM tip on the
conductance by comparing it to that of a planar tunnel junc-
tion, using identical setups and free parameters in the calcu-
lations.

Due to the 2D translational invariance in a planar tunnel
junction, the in-plane wave vector k� is a good quantum
number and, hence, is conserved in the tunnel process.
Within LB theory, the total transmittance through the device
is given by the sum of the transmission probabilities for each
k� in the 2BZ �Eqs. �16� and �17��. Since the wave vector
before the transmission, k�, equals that after the transmission,
k��, the tunneling can be regarded as specular. Surface states
cannot show up because these are orthogonal to the Bloch
states in the leads.87,88

To observe surface states in the conductance, a mecha-
nism is needed that enables scattering from the surface state
into lead-Bloch states and vice versa. Such a mechanism is,
for example, provided by structural disorder or �inelastic�
scattering at magnons or phonons. A further mechanism is
inherent to the STM: the presence of the tip �which can be
regarded as a defect� breaks the 2D translational invariance,

allowing the tunneling of scattering channels �Bloch states�
via surface states �see, e.g., Refs. 46 and 69 for Co�0001��.
Since the wave vector of the Bloch state before the transmis-
sion, k�, does not equal that after the transmission, k��, the
tunneling can be regarded as diffusive.

However, diffusive scattering involves a passage �at least�
three times through the vacuum barrier: an incoming electron

FIG. 4. �Color� Effect of the STM tip on the electronic structure
of the sample. The induced local density of states �NiI�E� of the
outermost surface layer of the sample electrode is shown as color
scale �E=EF−0.48 eV�. The LDOSs of the individual sites are in-
terpolated to achieve a smooth color gradient. The scale bar on the
right is in states per Hartree. White dots represent lattice sites; the
surface layer is marked by the yellow arrow.

(a)

(b)

(c)

FIG. 5. �Color� Electronic structure of the STM tip. The local
density of states �NiI�E� of tip-electrode layers containing the apex
tip atom �top�, the supporting atoms �middle�, and those of the
outermost surface layer �bottom� are shown as color scale �in states
per Hartree�. Yellow arrows mark the respective layers. Details as
for Fig. 4.
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is scattered at the tip, propagates through the barrier into the
surface states, and propagates back to the tip, where it is
scattered into an outgoing Bloch state which has to pass the
barrier again to become outgoing in the other electrode. Con-
sequently, surface states do not show up in the conductance
for large tip-sample distances but can contribute significantly
for small separations �note the exponential decrease of the
transmittance with increasing electrode separation�. Within
this respect, we expect a very weak effect of the L gap sur-
face state on the conductance, as is also suggested by the
weak tip-sample interaction �Fig. 4�. A more important effect
is expected from electronic states located at the tip �Fig. 5�.
Here, the passage of an electron through the barrier takes
place at least once and, hence, the contribution of tip states to
the conductance is expected to be much larger than that of
the surface states.

The local density of states of the Au�111� surface is
shown in Fig. 6 �top�. To make the L gap state clearly visible,
the k� summation was restricted to the central part of the 2BZ
�
k� 
 �0.12a0

−1 �Bohr radii��. The surface state shows almost

the constant LDOS of a 2D free electron gas, as expected.
Details on this state can be found in Ref. 36 �and references
therein�. �The small oscillations in the LDOS are an artifact
of the finite number of special k� points used in the 2BZ
integration52 in conjunction with a tiny imaginary part � of
the energy, Eq. �23��.

The LDOS for the STM tip is shown in Fig. 6 �bottom�.
Here, the k� summation is performed over the entire 2BZ. A
prominent contribution of the apex atom is observed as a
cusplike peak at EF−0.48 eV �top spectrum�. It appears at
the band bottom of the L gap state of the bare surface �which
is at −0.5 eV�, indicating its surface-state origin. This is sup-
ported by its orbital composition which is consistent with
that of the surface state. The STM tip can be viewed as a
protrusion with an attractive potential which results in this
localized electronic state. Its energy is hence expected to be
close to the band bottom of the L gap surface state. �Addi-
tional calculations for Ag�111� support this explanation: re-
placing Au by Ag, the band bottom of the surface state is
shifted to higher energies, and so is the tip-related electronic
state.� Its spectral weight decreases rapidly toward the bulk,
in particular much more rapidly than that of L gap surface
state. Therefore, a significant effect on the conductance from
this state is expected �see also Ref. 89�.

Having considered tip-induced effects on the electronic
structure of the STM junction, we now discuss the energy-
resolved transmittances of the PTJ and the STM. Their dif-
ference �� �upper curve in Fig. 7� directly shows the effect
of the STM tip as compared to a planar tunnel junction. We
note that the PTJ transmittance was also calculated by the
Bloch-wave transmission method of MacLaren et al.,37,50

showing agreement with that obtained by the real-space ap-
proach.

The transmittance of the PTJ is monotonically increasing
�lower curve in Fig. 7�. This behavior is expected because in
the given energy range only the free-electron-like sp states of
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FIG. 6. �Color online� Local density of states of the Au�111�
surface �top� and the STM tip �bottom�. The former, showing the
LDOS of a surface �top spectrum� and a subsurface atom �bottom
spectrum, as indicated�, is computed for wave vectors close to the
center of the 2BZ to emphasize the L gap surface state in Au�111�.
The latter depicts the LDOS of the apex atom �top spectrum� and of
a supporting atom �bottom spectrum, as indicated� of the STM tip.
A cusplike feature due to an electronic state localized at the tip apex
is marked by a vertical arrow. Spectra are offset by 3 states /Hartree
for clarity.
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FIG. 7. �Color online� Transmittances of Au�111� tunnel junc-
tions. The transmittances of the planar tunnel junction �lower curve;
multiplied by a factor of 20 for better comparison� and the tip-
induced transmittance ���, upper curve� versus energy are shown.
The increased transmittance due to an electronic state localized at
the tip apex is marked by a vertical arrow �cf. Fig. 6�.
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Au contribute to the conductance. The increase is thus simi-
lar to that observed in tunneling of free electrons through a
potential step.90,91

The transmittance in the PTJ is much smaller than that of
the STM �upper curve in Fig. 7�, which is attributed to the
larger effective width of the vacuum barrier: four layers for
the PTJ, two for the STM. The most striking difference, how-
ever, is the maximum in the STM transmittance at EF
−0.48 eV. Both shape and energy position suggest that its
origin is the electronic state localized at the STM tip �Fig. 6�.
We note that calculations for a Ag�111� tunnel junction pro-
duced similar results, with the main difference being a dif-
ferent binding energy of both the L gap surface state and the
tip-induced state �as compared to Au�. Summarizing, we find
a significant effect of electronic states localized at the STM
tip on the conductance.

IV. CONCLUDING REMARKS

A new approach for computing scanning tunneling mi-
croscopy from first principles is proposed. Within the frame-
work of Landauer-Büttiker theory, the conductance of a scan-
ning tunneling microscope is obtained from the transmittance
of the scattering channels through the interface region �the
surfaces of the electrodes and vacuum barrier including the
STM tip�. Tip-sample interaction is accounted for by com-
puting the electronic structure of the entire tunnel junction.
Furthermore, repeated images of the STM tip, as being
present in a supercell approach, are avoided by solving the
Dyson equation for the STM tip in real space �configuration
space�. Although formulated in multiple-scattering theory
�the layer Korringa-Kohn-Rostoker approach�, the proposed
approach can be implemented in any Green-function method
for electronic-structure calculations.

The applicability of the method is proven by investigating
the effect of the STM tip on the conductance of Au�111�
tunnel junctions. The conductance of a STM is compared to
that of a corresponding planar tunnel junction. It is found
that electronic states localized in the STM tip contribute sig-
nificantly to the conductance, showing that diffusive tunnel
processes are accounted for in the presented approach.

Finally, we would like to point out a difference from the
Tersoff-Hamann model. In the TH model, an increase of the
tip-sample distance gives stronger emphasis to surface-state

contributions to the conductance, while bulk-state contribu-
tions become reduced. The very reason is that generally the
local density of surface states extends more into the vacuum
barrier than that of bulk states. Within the present Landauer-
Büttiker-based approach, however, an increase of the tip-
sample distance reduces surface-state contributions because
the probability of diffusive scattering due to the STM tip
decreases with respect to the probability of specular scatter-
ing. This can be explained as follows. The scattering chan-
nels are orthogonal to the localized states �surface states or
tip states�. As a consequence, the latter states do not contrib-
ute to the conductance if there is no means to couple them to
the scattering channels. This is in particular the case for pla-
nar tunnel junctions �note that the in-plane wave vector is
conserved for these systems�. In a STM, however, the tip
itself provides a means to scatter the channels in and out of
the localized states. For a surface state to contribute, an in-
coming electron has to pass at least three times the vacuum
barrier and scattered twice at the STM tip. Hence, the trans-
mission amplitude is expected to be much smaller than for
electrons that pass the vacuum barrier only once. Conse-
quently, the decrease of the surface-state contributions with
increasing tip-sample distance are not an artifact of the pro-
posed approach but are inherent in the Landauer-Büttiker
theory. It appears worth investigation in the future, especially
by comparing theoretical results obtained by both approaches
with experimental data.

The method can also be applied to nanowires and atomic
point contacts, provided the electric current flows through a
bottleneck �as opposed to a PTJ�. Based on Green functions,
substitutional disorder can be treated within the inhomoge-
neous coherent-potential approximation,30,40,45 hence avoid-
ing averaging over configurations in a supercell approach.
Problems worth investigation in the future are substitutional
disorder in the interface region and magnetic disorder in a
magnetic tunnel junction, for example in the disordered local
moment picture �e.g., Ref. 92�. Since the method is imple-
mented in a spin-polarized relativistic layer KKR code, spin-
dependent conductances can also be computed, allowing in-
vestigation of spin-resolved scanning tunneling microscopy
and tunnel magnetoresistances. Further, due to the inclusion
of spin-orbit coupling, it is straightforward to study noncol-
linear magnetic configurations which might show up at the
STM tip and in nanowires.

*Present address: CSMD, Oak Ridge National Laboratory, Oak
Ridge, Tennessee 37831, USA. sahakk@ornl.gov
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