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Abstract
The ballistic conductance of Fe/MgO/Fe magnetic tunnel junctions depends significantly on the
direction of the magnetization in the leads, as is investigated by relativistic first-principles
electronic structure and transport calculations. The rotation of the parallel aligned lead
magnetizations from in-plane to perpendicular orientation with respect to the interfaces, that is
tunnel anisotropic magnetoresistance (TAMR), increases the zero-bias conductance by about
30%. The effect originates from both the Rashba spin–orbit interaction at the interfaces and
from resonant tunneling. Spin–orbit induced band gaps in the leads show no considerable effect
on the anisotropic magnetoresistance. The tunnel magnetoresistance (TMR), i.e. the dependence
of the conductance on the mutual angle between the lead magnetizations, is also addressed.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

The transport properties of a magnetoelectronic device are
typically changed by an external magnetic field [1, 2]. For
example, in magnetic tunnel junctions the magnetizations in
the two ferromagnetic leads can be aligned either parallel (P) or
antiparallel (AP) to each other, depending on the strength and
sign of the applied field. Correspondingly, the resistances ρ(P)

and ρ(AP) differ (e.g. [3–7]), as is commonly expressed by the
magnetoresistance ratio. The latter is defined as the relative
change of ρ(AP) with respect to ρ(P). This effect is named
tunnel magnetoresistance (TMR; e.g. [8]), similar to the giant
magnetoresistance for a spin-valve structure (e.g. [9]).

The resistivity of bulk ferromagnetic samples also depends
on the direction of an external magnetic field [10]. This
anisotropic magnetoresistance (AMR) was discovered 1857 by
Thomson [11]. Since the transport in extended samples is
diffusive, the effect is attributed to electron–electron scattering
and to scattering at defects, in particular to sd impurity
scattering [12, 13]. The angular dependence of the resistivity
is given by

ρ(θ) = ρ⊥ + (ρ‖ − ρ⊥) cos2 θ, (1)

3 Present address: European Synchrotron Radiation Facility–BP 220, F-38043
Grenoble Cedex, France.

where ρ‖ (ρ⊥) is the resistivity with the external field along
(perpendicular to) the direction of the electric current. θ is
the angle between magnetic field and current. Typically one
finds ρ‖ < ρ⊥, with a difference of the order of 5%. The
angular dependence is necessarily a spin–orbit effect because
the spin–orbit interaction is the only mechanism which couples
the electronic spin degrees of freedom (which are affected by
the magnetic field) to the orbital degrees of freedom (which
determine the charge transport).

In contrast to diffusive transport in bulk samples, transport
in nanostructures may be ballistic. The ballistic anisotropic
magnetoresistance (BAMR) is observed in ferromagnetic
nanocontacts, e.g. in nanowires [14] (for conductance
oscillations with wire length see [15]). The anisotropic
conductance changes abruptly upon variation of θ , in contrast
to the continuous behavior of the AMR, equation (1). Due to
the spin–orbit interaction, the number of bands which cross the
Fermi level depends on θ [16]. Therefore, the number N(θ)

of scattering channels which contribute to the conductance
changes likewise, and the conductance displays consequently
a step-wise dependence on θ . Since the number of channels
in an ultrathin nanowire is small, the BAMR ratio [N(θ) −
N(0)]/N(0) is of the order of a few tens per cent.

Another type of nanodevices which show anisotropic
magnetoresistance is magnetic tunnel junctions. The tunnel
anisotropic magnetoresistance (TAMR) is found in junctions
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which comprise at least one ferromagnetic electrode, e.g. a
ferromagnetic (FM) and a nonmagnetic (NM) electrode
separated by an insulating spacer (I) [17, 18]. Origins of the
TAMR to come into question are (i) spin–orbit induced gaps
in the band structure of the FM electrode, (ii) the Rashba
effect [19] at the FM/I interface, and (iii) resonant states
whose coupling to the scattering channels depends on the
magnetization direction. The prospects of TAMR devices are
that they may maintain ballistic transport and are easier to
produce than nanocontacts (e.g. break junctions).

The number of channels which contribute essentially
to the tunnel conductance of a planar magnetic junction is
typically much smaller than the total number of channels.
In other words, tunneling filters out a significant part of
the phase space (i.e. the two-dimensional Brillouin zone).
By geometric constraints—as in a nanowire—the number of
channels can be further reduced, resulting in an increased
magnetoresistance [20] (for AMR and TAMR in break
junctions and nanoconstrictions see [21, 22]).

The spin–orbit interaction affects the electronic structure
of a junction, and thus its conductance, in two ways. First,
it leads to gaps in the band structure of the electrodes.
The latter would reduce the number of available conducting
channels. Second, the Rashba effect can lift degeneracies in
the electronic structure at the interfaces. Note that effects due
to spin–orbit coupling are typically stronger at an interface than
in the bulk, due to the potential gradient at the interface [23].

A large TAMR ratio is expected if (i) there are spin-
polarized interface resonances [24, 25], (ii) the interfaces
produce a large Rashba effect, e.g. by a large potential
gradient, and (iii) if the nonmagnetic electrode shows a
featureless transmission close to the Fermi energy (e.g. Cu
with its free-electron-like sp band). TAMR ratios of
up to 20% are theoretically predicted for custom-tailored
Fe(001)/vacuum/bcc-Cu(001) tunnel junctions [17].

Magnetic tunnel junctions usually comprise two ferro-
magnetic electrodes separated by an oxide spacer (FM/I/FM;
e.g. [26, 27]), rather than being separated by a vacuum barrier.
While a junction with a vacuum barrier and a Cu electrode is
not very selective in phase space, a question arises whether a
considerable TAMR ratio can be maintained in a highly phase-
space selective FM/I/FM junction [28–32]. Phase-space selec-
tion is found for example in Fe/MgO/Fe junctions (e.g. [33]).

From the above it is evident that there is need for
an ab initio investigation of the anisotropic conductance in
magnetic tunnel junctions with two ferromagnetic electrodes.
In this paper we present and discuss results of first-principles
electronic structure and transport calculations of the TAMR
in Fe/FeO/MgO/FeO/Fe junctions. The ballistic transport
is calculated according to Landauer–Büttiker theory [34], as
implemented in relativistic multiple-scattering theory (layer
Korringa–Kohn–Rostoker method). For symmetric junctions
(i.e. a FeO layer at both interfaces) the conductance is
significantly influenced by resonant tunneling, leading to so-
called hot spots in the transmittance maps [35–37]. In
contrast to an FM/I/NM junction, we are concerned with
two magnetic electrodes (FM/I/FM) which allows us to study
both the tunnel magnetoresistance (TMR) and the tunnel

anisotropic magnetoresistance (TAMR). To investigate TMR,
the magnetization orientation of one of the leads is kept fixed
while that in the other lead is rotated. For the TAMR, the lead
magnetizations are parallel aligned but their angle with respect
to the crystal axes is varied. Please note that the effect of spin–
orbit coupling on the spin-dependent transport was studied by
Li and Chang by means of a tight-binding model [38].

The paper is outlined as follows. Details of the
computations are provided in section 2. The effect of bulk-
band gaps which are induced by spin–orbit coupling on the
conductance is addressed for Fe electrodes in section 3. The
TMR and the TAMR in a Fe/FeO/MgO/FeO/Fe tunnel junction
are discussed in section 4, focusing here on the Rashba effect
and on resonant tunneling.

2. Computational

The ballistic transport calculations are based on first-principles
electronic structure calculations for Fe/MgO/Fe magnetic
tunnel junctions, as reported in [35]. The local spin-
density approximation to density functional theory with the
Perdew–Wang exchange–correlation functional is applied [39].
In the present paper we focus on symmetric junctions
with four MgO layers as spacer. MgO spacer and Fe
electrodes are separated by FeO layers at both interfaces
(i.e. an Fe(001)/FeO/(MgO)4/FeO/Fe(001) junction). The
relaxed interface geometry is taken from x-ray diffraction
experiments [35]. In contrast to that experiment [35], which
finds partially occupied oxygen sites in the FeO layer, fully
occupied FeO layers are assumed.

The transport calculations are performed with the spin-
polarized relativistic layer Korringa–Kohn–Rostoker computer
code OMNI2K [40, 41] which involves solving the Dirac equation
for magnetic sites [42]. The ballistic conductance C for
a planar tunnel junction is calculated within the Landauer–
Büttiker approach [34],

C = e2

h

∫
2BZ

T (EF; k‖) dk2
‖ . (2)

C is computed within a scheme proposed by MacLaren et al
[43]. For zero-bias voltage the energy is restricted to the Fermi
energy EF. Transport is along the z-axis, i.e. perpendicular to
the layers.

The transmittance T (EF; k‖) is integrated over the two-
dimensional Brillouin zone (2BZ), by using more than 40 000
wavevectors. It comprises a sum over all pairs of Bloch states
(i.e. the scattering channels) with energy E and wavevector
k‖ = (kx, ky) which are incoming in one electrode and
outgoing in the other electrode,

T (E; k‖) =
∑
nm

Tn→m(E; k‖). (3)

Tn→m(E; k‖) is the probability for transmission of the
incoming Bloch state with band index n through the spacer into
the outgoing Bloch state with band index m. A convenient tool
for analyzing details of the transport are transmittance maps
which display T (E; k‖) versus k‖ at energy E .
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Since interfaces determine considerably the transport
properties (e.g. [44–48]), transmittance maps need to be
interpreted by means of the local electronic structure, rather
than by the electronic structures of the bulk electrodes. The
former is obtained from the spectral density

Nla(E; k‖) = − 1

π
Im Tr G+

la,la(E; k‖) (4)

of atom a in layer l. G+
la,la is the site-diagonal Green

function of that site. The trace involves integration over
the muffin-tin sphere and summation over spin angular
quantum numbers [42]. Spectral density maps display
Nla(E; k‖) versus k‖ for both energy and site fixed, similar
to transmittance maps.

The tunnel magnetoresistance (TMR) is defined as the
variation of the tunnel conductance C of the junction upon
changing the mutual angle θ of the magnetization directions
ML and MR of the electrodes. Here, L (R) indicates the
‘left’ (‘right’) electrode. Due to spin–orbit coupling, the
conductance depends on the direction of the magnetizations
with respect to a crystal axis. For investigating TMR we keep
MR parallel to the [hkl] direction (here [001] or [100]) while
rotating ML in a given plane (here in the (010) plane). For
MR parallel to [001] and [100], ML = (sin θ, 0, cos θ) and
ML = (cos θ, 0, sin θ), respectively. The ‘optimistic’ TMR
ratio is then given by

δ[hkl] ≡ C(P) − C(AP)

C(AP)
= C(0◦) − C(180◦)

C(180◦)
, (5)

i.e. the conductance change from parallel (P) to antiparallel
(AP) alignment. The subscript [hkl] indicates the direction of
MR.

Without spin–orbit coupling, the angular dependence of
the conductance is given by C(θ) ∝ a + b cos θ , as was
shown for free electrons by Slonczewski [49]. It appears as
a pure spin effect, namely due to rotation of spin quantization
axes [50, 51]. If spin–orbit coupling is taken into account, the
spin degrees of freedom are coupled to the orbital degrees of
freedom and, as a result, the angular dependence is expected to
differ from the cos-behaviour [52].

The tunnel anisotropic magnetoresistance (TAMR) is the
change of the conductance for parallel lead magnetizations
upon rotating these in a given crystal plane (here, the (010)
plane). With θ being the angle with respect to the [001]
direction (ML = MR = (sin θ, 0, cos θ)), we define the
TAMR ratio as

� ≡ C([001]) − C([100])
C([100]) = C(0◦) − C(90◦)

C(90◦)
, (6)

in accordance with [17].

3. Ballistic anisotropic magnetoresistance of Fe(001)

As a prequel, the ballistic anisotropic magnetoresistance is
addressed in order to establish both the signature of bulk-band
gaps in transmittance maps and the importance of phase-space
filtering. For this purpose we choose as a ‘toy model’ an

Figure 1. Spin-resolved relativistic band structure of Fe of the
�–�–H line (along [001]) for magnetization M ‖ [100] (a) and
M ‖ [001] (b). The spin orientation is color coded as red (medium
grey) and blue (dark grey) for spin up (↑) and down (↓), respectively.
Circles highlight the spin–orbit induced band gap at E = −1.05 eV,
being present for M ‖ [100] (a) but closed for M ‖ [001] (b).

Fe(001) electrode, in analogy to an infinitely long nanowire
which shows BAMR [16]. The transmittance is computed in an
(E; k‖)-region in which a spin–orbit induced band gap shows
up dependent on the magnetization direction.

The Fe band structure of the �–�–H line along [001]
(k‖ = 0; figure 1) exhibits several band gaps induced
by spin–orbit coupling, in dependence on the magnetization
direction [53]. We concentrate on the gap at E = −1.05 eV
and k⊥ ≈ 0.5|�–�–H|, which shows up for the magnetization
M ‖ [100] (indicated by a circle in figure 1(a)). The gap is
closed for M ‖ [001] (figure 1(b)). In the spectral density
map for E = −1.05 eV the band gap appears as a sharp,
circular minimum with a radius of 0.04 Bohr−1 for M ‖ [100]
(figure 2(a)). In contrast, the spectral density is smooth for
M ‖ [001] (figure 2(b)).

Ballistic transport in an ideal electrode is discussed in
terms of the Sharvin conductance [54]. Because the Bloch
states are not scattered one finds Tn→m(E; k‖) = δnm , and
the transmittance T (E; k‖) equals the number of Bloch states
which propagate in the [001] direction at (E; k‖). The number
of these Bloch states is three at the band gap (figure 1(a);
M ‖ [100]), as is the transmittance in the center of the 2BZ
(figure 2(c)). The gap is closed for M ‖ [001] and the
transmittance is increased to five (figures 1(b) and 2(d)).

In these model calculations a band gap is easily identified
as a rather extended minimum in both the spectral density
and the transmittance maps. To address its effect on the
conductance, the transmittance is integrated in the central
part of the 2BZ. For the Fe leads magnetized along [100]
and [001] one obtains 4.792 and 4.841 for the total
transmittance, respectively, which is a relative change of
about 1.02%. The change in the spectral densities is even
less (58.034 states Harteee−1 for M ‖ [100] compared
to 58.328 states Hartree−1 for M ‖ [001], that is about
0.50%). Hence one is led to conclude that band gaps in
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Figure 2. Spectral density (top row, (a) and (b)) and transmittance (bottom row, (c) and (d)) of Fe(001) for E = −1.05 eV at the center of
the 2BZ, depicted as color scales (grey scales). The magnetization M is parallel to [100] (left column, (a) and (c)) and [001] (right column,
(b) and (d)). The kx -axis (ky-axis) is along [100] ([010]). The number of Bloch states which propagate in the [001] direction is indicated in (c)
and (d). The band gap marked in figure 1 appears as a circular minimum about (kx , ky) = 0 for M ‖ [100] ((a) and (c)).

the electrodes produce no significant effect in the current–
voltage characteristics of a planar tunnel junction. In contrast,
the sizable BAMR of a narrow nanocontact can be attributed
to the lateral constriction which reduces the phase space.
Considering only k‖ = 0, the BAMR for the Fe electrode
would be (5 − 3)/3 or 67%. Hence, phase space filtering—as
is typically present in realistic tunnel junctions—could provide
a means for obtaining a significant TAMR ratio.

Summarizing so far, we find that spin–orbit induced
band gaps in the electrodes show up as extended minima in
the transmittance maps (figure 2). Their effect is however
comparably small if the total number of conduction channels
is large. This finding suggests that phase space filtering is
essential for achieving a large TAMR.

4. Anisotropic magnetoresistance of Fe/MgO/Fe
tunnel junctions

Having ruled out bulk-band gaps as a source for a large TAMR,
we now turn to the Rashba effect and resonant tunneling.
A signature of the Rashba effect (e.g. [19, 23, 55]) at a
magnetic surface is a spin-dependent shift of features in the
spectral density maps, most prominently for surface states. The
displacement is perpendicular to the in-plane magnetization, as

was demonstrated for Gd(0001) [56]. The effect also shows
up for surface resonances in Fe(001) and manifests itself in an
anisotropic conductance [17, 52].

The strength of the Rashba effect depends on both
the atomic number and on the potential gradient at the
interface [57, 58]. For an Fe(001) surface the latter is
mainly attributed to the slope of the vacuum barrier. At an
Fe/FeO/MgO interface, however, the potential gradient may be
significantly smaller. Consequently, the Rashba effect might
be too small to produce a sizable TAMR ratio.

An interface resonance is an electronic state which is
resonant with Bloch states of the lead and shows an increased
probability density at the interface. A ‘handshake’ of two
resonances located at either interface of a planar junction
can increase the transmittance considerably. A signature
of such resonant tunneling is a transmittance close to unity
(i.e. orders of magnitude larger than in the rest of the 2BZ).
Consequently, resonant tunneling may essentially govern
the conductance [24, 59–61] although it shows up in tiny
parts of the 2BZ, in so-called ‘hot spots’. Both interface
resonances have to appear necessarily at the same (E; k‖). In
symmetric tunnel junctions a ‘handshake’ is more likely than in
asymmetric junctions. Note that the symmetry of real samples
is typically broken, due to an inherent structural asymmetry
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Figure 3. Zero-bias transmittance maps of Fe/FeO/(MgO)4/FeO/Fe tunnel junctions for different magnetic configurations: magnetizations
along [100] in both leads (a), along [100] in one lead and along [001] in the other lead (b), and along [001] in both leads (c), depicted as a
color scale (grey scale) in the central part of the 2BZ.

(e.g. Fe/FeO/MgO/Fe or Fe/vacuum/Cu), to disorder or to a
nonzero bias voltage. The ‘handshake’ may therefore by less
likely in these systems [36].

The magnetization direction in the electrodes affects
via spin–orbit coupling both the Bloch states and the
interface resonances, and hence their coupling [17]. If
the magnetizations in the electrodes are parallel, resonant
tunneling is preferred. The symmetry is however broken
by a nonzero mutual angle θ between the magnetizations
(i.e. TMR). And as a result, the transmittance is reduced in
the hot spots. If the magnetizations in both leads are rotated
simultaneously (i.e. TAMR), for example from the [001] into
the [100] direction, the electronic structure at the interfaces is
changed by the Rashba effect and, thus, the conductance is
changed as well. This effect can be visualized as deformations
in transmittance maps and in the associated spectral density
maps.

To investigate the aforementioned effects in perspicuity
we focus on symmetric tunnel junctions and zero-bias voltage,
that is a case where the anisotropic magnetoresistance due
to resonant tunneling should be considerable. To strengthen
the discussion further it is concentrated on transmittance and
spectral density maps of the central part of the 2BZ (note that
for thick spacers mostly channels with small |k‖| contribute to
the conductance).

The transmittance map for the junction with both lead
magnetizations ML and MR parallel to [100] shows a twofold
rotational symmetry (point group 2mm; figure 3(a)). The
transmittance is large in four ring-like features at about
(kx, ky) = (±0.08,±0.08) Bohr−1. These appear due to
resonant tunneling, as is evident from the transmittance being
very close to unity. There is also resonant tunneling at the
center of the 2BZ and at the bar-shaped features at ky = 0.
As anticipated, one finds a strong filtering of the phase space
due to resonant tunneling, that is the transmittance is sizable
solely in small parts of the 2BZ.

Rotating MR towards [001] while keeping ML along
[100] (figure 3(b)), a central ring of large transmittance with
small radius appears. The bar-shaped features have completely
disappeared, implying that resonant tunneling is suppressed
in this (E; k‖)-region. Also striking is the deformation of

the four ring-like structures, a characteristic of the Rashba
effect [56]. Note further that the twofold rotational symmetry
of the transmittance map is reduced to a reflection symmetry
about the ky axis (point group m). The difference between
figures 3(a) and (b) is a signature of TMR because the angle
θ between the magnetizations is nonzero in figure 3(b), as
opposed to figure 3(a).

The map for the junction with both lead magnetizations
parallel to [001] shows a fourfold rotational symmetry (point
group 4mm; figure 3(c)). The transmittance is clearly
largest in the four ring-like features. The associated spectral
density reveals a ‘handshake’ of interface resonances which
comprise mostly spin-down sp orbitals at the oxygen sites
in the MgO spacer (not shown). Note also the central
ring of large transmittance with a radius of 0.04 Bohr−1,
which is a significantly larger radius than that in figure 3(b).
The difference between figures 3(a) and (c) indicates TAMR
because the angle of the parallel lead magnetizations with
respect to a crystal axis is changed.

To explain prominent features in the transmittance maps,
we present in figure 4 spectral density maps at selected sites for
a lead magnetization M along [100] (left column) and [001]
(right column), respectively. Note that there is no strict one-
to-one correspondence of transmittance and spectral density.
Features in the transmittance maps are nevertheless expected
to have counterparts in the spectral density maps (e.g. [48]).

Already in the Fe bulk layers (first row in figure 4)
one finds a significant spin–orbit induced deformation of the
spectral density. In particular for M ‖ [001] (figure 4(b)),
the bright central ring shows up as in the transmittance
(figure 3(c)).

A Rashba deformation appears in the FeO layer (second
row in figure 4). The two arcs with ky > 0 (figure 4(d)) are
shifted to larger ky values (figure 4(c)). The spectral density
of those with ky < 0 (figure 4(d)) is reduced in figure 4(c). In
the transmittance maps this effect shows up as increased radii
of the four ring-like structures (compare figures 3(c) with (a)
and (b)).

Also the oxygen site of the first MgO layers (adjacent to
the FeO layer) displays a profound effect (third row in figure 4).
The cross-like feature in figure 4(f) is almost reduced to a spot
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Figure 4. Atom-resolved spectral densities of an Fe/FeO/(MgO)4/FeO/Fe tunnel junction for two different magnetic configurations:
magnetization along [100] (left column) and along [001] (right column) at the Fermi energy. The selected sites are Fe bulk ((a) and (b)), Fe in
the FeO interface layer ((c) and (d)), and O in the first MgO spacer layer ((e) and (f)). The color scales (grey scales) vary from row to row.
Only the central part of the 2BZ is displayed.

in figure 4(e). The four bright arcs in figure 4(f) show up
as sizable transmittance in figure 3(c). These do not appear
in figure 4(e) and thus appear with a reduced transmittance
in figure 3(b). The transmittance is even more reduced in
figure 3(a).

For the junction with both ML and MR parallel to
[100] resonant tunneling is mainly mediated by oxygen py pz

orbitals, whereas for the [001] direction mostly oxygen px py

orbitals contribute, as is found by investigating the spectral
density at selected hot spots.

The analysis of the spectral density maps corroborates
the explanation of the anisotropic transmittances by the
Rashba effect in interplay with resonant tunneling. The main
signatures are strongly confined areas in the 2BZ with large
spectral weight and a magnetization-dependent reduction of
the symmetry of the maps. For M ‖ [001] the point group is
4mm, which is reduced to m for M ‖ [100] (reflection about
the ky axis, i.e. perpendicular to M ).

For Fe(001)/vacuum/bcc-Cu(001) junctions it is found
that the spin-flip transmission for M ‖ [001] is less than for

M ‖ [100] [17]. This finding was explained by the intrinsic
broadening of interface resonances which is influenced by
spin–orbit coupling. By analyzing the Bloch state resolved
transmittance Tn→m(E; k‖) at selected hot spots, we find the
same behavior in the Fe/MgO/Fe junction, thus corroborating
the explanation by Chantis et al [17].

Having addressed qualitatively the effect of spin–orbit
coupling on the transmittance, we discuss now the TMR for the
magnetizations along [001] and [100]. For MR ‖ [001], the
conductances for the parallel (P, θ = 0◦) and the antiparallel
(AP, θ = 180◦) configurations are C[001](P) = 0.01116 e2/h
(figure 3(c)) and C[001](AP) = 0.000 26 e2/h, respectively.
For MR ‖ [100], we find C[100](P) = 0.007 73 e2/h
(figure 3(a)) and C[100](AP) = 0.000 25 e2/h. The TMR
ratios, as defined in equation (5), are δ[001] = 4205% and
δ[100] = 2956%, indicating a sizable change with respect to
the magnetization direction [hkl].

The conductance C[100](P) is significantly reduced (by
31%) with respect to C[001](P), as is evident by visual

6



J. Phys.: Condens. Matter 20 (2008) 155208 M N Khan et al

Figure 5. Zero-bias transmittances of Fe/FeO/(MgO) 4 /FeO/Fe
tunnel junctions versus angle θ between the magnetizations ML and
MR of the Fe leads (i.e. TMR). In the case ‘[001]’ (blue (dark grey)
symbols) MR is parallel to [001], while for ‘[100]’ (red (medium
grey) symbols) MR is parallel to [100]. ML is rotated in the (010)
plane (see insets for schematic representations of the MTJ). The
magnetizations are parallel for θ = 0◦, orthogonal for θ = 90◦, and
antiparallel for θ = 180◦ (the symbols at 180◦ overlap). cos-fits to
the data are given by solid lines.

comparison of figure 3(a) with (c). The TAMR ratio �

defined in equation (6) is 44%. In contrast, the respective
AP conductance is reduced by only 2%. Please note that the
difference in the P conductances is of the same order as found
theoretically for Fe/vacuum/Cu junctions [17].

For investigating the dependence of the conductance on
the mutual magnetization angle θ , MR was fixed—parallel to
[001] and [100]—while ML was rotated in the [010] plane
(cf section 2). In other words, we are addressing the evolution
of the conductance from the P to the AP alignment, that
is TMR. The transmittances of both configurations follow
approximately the cos dependence which would have been
obtained without spin–orbit coupling (cf. the a + b cos θ fit
to the data) [49]. Hence, the deviations from this behavior are
attributed to the spin–orbit interaction. Note that both curves
coincide for θ = 90◦, due to symmetry. Further, the data points
overlap at θ = 180◦.

A significant deviation from the cos dependence was
recently found in MTJs with CoFe leads and MgO as
well as Al2O3 spacers [52]. The higher-order contribution
was attributed to an interface resonance that affects the
transmittance of the contributing scattering channels by
the spin–orbit interaction, as revealed by tight-binding
calculations. This observation is in agreement with the present
findings of a significant higher-order contribution to angular
dependence (i.e. a cos(2θ) term).

As is evident from figure 5, the transmittance depends on
the direction of the parallel electrode magnetizations (compare
the cases ‘[100]’ and ‘[001]’ for θ = 0◦), that is TAMR. The
dependence on the angle with respect to the [001] direction is
given in figure 6, with the magnetizations rotated within the
(010) plane. Due to symmetry, which gives C(θ) = C(−θ)

and C(90◦ + θ) = C(90◦ − θ), it is sufficient to display the
θ -range from 0◦ to 90◦. The transmittance (symbols) follows
roughly a cos(2θ) dependence but with significant deviations.
Note that without spin–orbit coupling the transmittance would

Figure 6. Zero-bias transmittances of Fe/FeO/(MgO) 4 /FeO/Fe
tunnel junctions versus angle θ between the parallel magnetizations
of the Fe leads and the [001] direction (i.e. TAMR). The
magnetizations are along [001] ([100]) for θ = 0◦ (θ = 90◦). A
dashed line serves as guide to the eye. A constant (solid line) is fitted
to the data.

not depend on θ at all, as is visualized by a constant fitted to
the data (solid line in figure 6). Hence, spin–orbit coupling
has a significant effect on the conductance of magnetic tunnel
junctions.

In conclusion, the Rashba effect in co-action with resonant
tunneling provides an efficient mechanism for anisotropic
magnetoresistance in symmetric tunnel junctions. Essential
ingredients are a strong reduction of the phase space which
contributes sizably to the conductance (‘hot spots’) and a
significant deformation of the spectral density by spin–orbit
coupling.

5. Concluding remarks

Our theoretical analysis supports that the Rashba effect
in interplay with a reduction of phase space serves as a
mechanism for the tunneling anisotropic magnetoresistance
(TAMR) in planar junctions with two ferromagnetic leads. The
Rashba effect changes the spin-dependent electronic structure
at the ferromagnet/spacer interfaces, in dependence on the
direction of the external magnetic field. Moreover, the phase
space is reduced for example by interface resonances with a
large transmission probability. This opens the possibility to
utilize the magnetic field direction as a means to change the
conductance of a magnetoelectronic device, in addition to the
conventional field reversal.

Investigated by relativistic first-principles calculations for
idealized tunnel junctions the TAMR is sizable, but it might be
less in realistic systems. In particular, resonant tunneling may
be reduced by imperfections at the interfaces. To estimate the
size of the reduction, transport calculations including disorder
and for nonzero bias voltage need to be performed, preferably
in conjunction with experiments.
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Condens. Matter 16 S5819

[47] Heiliger C, Zahn P, Yavorsky B Y and Mertig I 2005 Phys. Rev.
B 72 180406(R)

[48] Bose P, Mertig I and Henk J 2007 Phys. Rev. B 75 100402(R)
[49] Slonczewski J C 1989 Phys. Rev. B 39 6995
[50] Rose E M 1961 Relativistic Electron Theory

(New York: Wiley)
[51] Kessler J 1985 Polarized Electrons (Springer Series on Atoms

and Plasmas vol 1) 2nd edn (Berlin: Springer)
[52] Gao L, Jiang X, Yang S H, Burton J D, Tsymbal E Y and

Parkin S S P 2007 Phys. Rev. Lett. 99 226602
[53] Ackermann B, Feder R and Tamura E 1984 J. Phys. F: Met.

Phys. 14 L173
[54] Sharvin Y Y 1965 Sov. Phys.—JETP 21 655
[55] Devreese J T and Peeters F M (ed) 1987 The Physics of the

Two-Dimensional Electron Gas (NATO ASI Series B
vol 157) (New York: Plenum)

[56] Krupin O, Bihlmayer G, Starke K, Gorovikov S, Prieto J E,
Döbrich K, Blügel S and Kaindl G 2005 Phys. Rev. B
71 201403(R)
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Drchal V and Kudrnovský J 2002 Phys. Rev. B 65 064425
[61] Mu H F, Zhu Z G, Zheng Q R, Jin B, Wang Z C and Su G 2004

Phys. Lett. A 323 298

8

http://dx.doi.org/10.1016/S0304-8853(98)00376-X
http://dx.doi.org/10.1088/0953-8984/13/34/314
http://dx.doi.org/10.1103/RevModPhys.76.323
http://dx.doi.org/10.1103/PhysRevB.10.4626
http://dx.doi.org/10.1109/TMAG.1975.1058782
http://dx.doi.org/10.1038/nnano.2007.36
http://dx.doi.org/10.1103/PhysRevB.74.115108
http://dx.doi.org/10.1103/PhysRevLett.94.127203
http://dx.doi.org/10.1103/PhysRevLett.98.046601
http://dx.doi.org/10.1103/PhysRevLett.99.056601
http://dx.doi.org/10.1088/0022-3719/17/33/015
http://dx.doi.org/10.1063/1.117814
http://dx.doi.org/10.1103/PhysRevLett.94.127202
http://dx.doi.org/10.1103/PhysRevLett.97.127202
http://dx.doi.org/10.1016/S0304-8853(01)00728-4
http://dx.doi.org/10.1103/PhysRevLett.93.106602
http://dx.doi.org/10.1063/1.1586785
http://dx.doi.org/10.1038/nmat1257
http://dx.doi.org/10.1063/1.1789241
http://dx.doi.org/10.1103/PhysRevLett.93.117203
http://dx.doi.org/10.1103/PhysRevLett.94.027203
http://dx.doi.org/10.1103/PhysRevLett.95.086604
http://dx.doi.org/10.1103/PhysRevB.75.045306
http://dx.doi.org/10.1103/PhysRevB.63.220403
http://dx.doi.org/10.1103/RevModPhys.71.S306
http://dx.doi.org/10.1103/PhysRevLett.95.176101
http://dx.doi.org/10.1103/PhysRevLett.96.119601
http://dx.doi.org/10.1103/PhysRevLett.96.119602
http://dx.doi.org/10.1016/j.jmmm.2003.11.380
http://dx.doi.org/10.1103/PhysRevB.45.13244
http://dx.doi.org/10.1103/PhysRevB.59.5470
http://dx.doi.org/10.1103/PhysRevB.68.092402
http://dx.doi.org/10.1103/PhysRevB.69.174408
http://dx.doi.org/10.1088/0953-8984/16/48/056
http://dx.doi.org/10.1103/PhysRevB.72.180406
http://dx.doi.org/10.1103/PhysRevB.75.100402
http://dx.doi.org/10.1103/PhysRevB.39.6995
http://dx.doi.org/10.1103/PhysRevLett.99.226602
http://dx.doi.org/10.1088/0305-4608/14/9/002
http://dx.doi.org/10.1103/PhysRevB.71.201403
http://dx.doi.org/10.1016/S0039-6028(00)00441-6
http://dx.doi.org/10.1103/PhysRevB.66.245419
http://dx.doi.org/10.1126/science.1071300
http://dx.doi.org/10.1103/PhysRevB.65.064425
http://dx.doi.org/10.1016/j.physleta.2004.01.076

	1. Introduction
	2. Computational
	3. Ballistic anisotropic magnetoresistance of Fe\(001\)
	4. Anisotropic magnetoresistance of Fe/MgO/Fe tunnel junctions
	5. Concluding remarks
	References



