
T h e  o p e n – a c c e s s  j o u r n a l  f o r  p h y s i c s

New Journal of Physics

Onset of magnetic order in strongly-correlated
systems from ab initio electronic structure
calculations: application to transition metal oxides

I D Hughes1, M Däne2,3, A Ernst2, W Hergert3, M Lüders4,
J B Staunton1,5, Z Szotek4 and W M Temmerman4

1 Department of Physics, University of Warwick, Coventry, CV4 7AL, UK
2 Max-Planck-Institut für Mikrostrukturphysik, Weinberg 2, D-06120 Halle,
Germany
3 Institut für Physik, Martin-Luther-Universität Halle-Wittenberg,
Friedemann-Bach-Platz 6, D-06099 Halle, Germany
4 Daresbury Laboratory, Daresbury, Warrington, WA4 4AD, UK
E-mail: j.b.staunton@warwick.ac.uk

New Journal of Physics 10 (2008) 063010 (13pp)
Received 25 February 2008
Published 6 June 2008
Online at http://www.njp.org/
doi:10.1088/1367-2630/10/6/063010

Abstract. We describe an ab initio theory of finite temperature magnetism
in strongly-correlated electron systems. The formalism is based on spin
density functional theory, with a self-interaction corrected local spin density
approximation (SIC-LSDA). The self-interaction correction is implemented
locally, within the Kohn–Korringa–Rostoker (KKR) multiple-scattering method.
Thermally induced magnetic fluctuations are treated using a mean-field
‘disordered local moment’ (DLM) approach and at no stage is there a fitting
to an effective Heisenberg model. We apply the theory to the 3d transition metal
oxides, where our calculations reproduce the experimental ordering tendencies,
as well as the qualitative trend in ordering temperatures. We find a large
insulating gap in the paramagnetic state which hardly changes with the onset
of magnetic order.
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1. Introduction

Many materials characterized by strong electron–electron correlations are of technological
interest. In the case of dilute magnetic semiconductors and the colossal magnetoresistive
manganites, amongst others, this interest stems from their potential application in spintronic
devices. As such, it is important to understand the interplay between charge and spin degrees of
freedom of the many interacting electrons in this class of materials. This requires a full quantum
description of the electron spin. For low temperatures, a magnetic material has an electronic
structure which has a fixed spin polarization, e.g. a uniform spin polarization for a ferromagnet
or fixed sublattice spin polarizations for an antiferromagnet. With increasing temperature, spin
fluctuations are induced which eventually destroy the long-range magnetic order and hence the
overall spin polarization. These collective electron modes interact as the temperature increases,
depending upon and affecting the underlying electronic structure. The implications can be
explored by invoking a timescale separation between the fast electronic motions and the much
slower spin fluctuations. For intermediate times, τ , the spin orientations of electrons leaving an
atomic site are sufficiently correlated with those arriving that the magnetization, averaged over
τ , is nonzero. ‘Local-moments’ are thus established. Although set up by the collective motion
of the interacting electrons these can be described as classical spin like variables, {êi}, provided
the temperature is not so low that the dynamics of the spin fluctuations become important. So,
for most finite temperatures, ensemble averages over the static orientational configurations of
the local moments determine the magnetic properties of a system. In the so-called disordered
local moment (DLM) approach [1], these averages are carried out using a mean-field technique.

A first-principles implementation of the DLM method [2], based on the density functional
theory (DFT) in the local spin density approximation (LSDA) and a multiple scattering effective
medium method to handle the local moment disorder, has proved to be extremely successful at
describing the magnetic properties of many transition metal systems [3]–[5]. In these systems,
however, charge correlations are weak and the electrons are fully itinerant. This is certainly not
the case in strongly correlated systems, such as the transition metal oxides (TMOs), which often
contain highly localized electron states for which the LSDA fails.

The self-interaction corrected local spin density approximation (SIC-LSDA) [6], can
account for correlation effects such that the ground state properties of the TMOs are well
reproduced [7, 8]. Recent papers by Lueders et al [9], and Daene et al [10] set out how to
implement this approach using a multiple scattering Kohn–Korringa–Rostoker (KKR) method.
This implementation of the SIC, the so-called local SIC (LSIC) [9], offers an immediate
generalization to disordered systems and opens up the possibility of implementing the DLM
picture of magnetism within such a SIC-based electronic structure scheme.
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Indeed recently [11], we showed how such a DLM-SIC approach provides an accurate
description of finite temperature magnetism in the heavy rare earths. In these systems, the
magnetic moments arise from highly localized 4f states and are coupled via an indirect
Ruderman–Kittel–Kasuya–Yosida (RKKY) exchange mechanism [12], mediated by the sd
conduction electrons. In this paper, we apply the DLM-SIC to the TMOs, where a super-
exchange mechanism, mediated by the oxygen ions, operates between local moments set up by
the 3d states of the transition metal ions. We investigate the spin fluctuations that characterize
the paramagnetic state of these systems above their magnetic transition temperatures, gaining
information about the type of ordering that is likely to occur as the temperature is lowered
through a phase transition. This finite temperature study is complementary to calculations of the
ground state energies of the same systems in different magnetic states at T = 0 K carried
out by several groups [7, 8, 13]. The work by Daene et al [10] is particularly relevant.

This paper is organized as follows. In section 2, we outline the DLM formalism and
its first-principles SIC-LSDA implementation within the KKR method. We examine in detail
the electronic structure of MnO in the paramagnetic state in section 3, and, by evaluating the
paramagnetic spin susceptibility, investigate the presence of any underlying ordering tendencies.
We extend our study to the whole TMO series in section 4, where we find good agreement with
the experiment, with the notable exception of the Nèel temperature of NiO, which we find to be
too small by a third. The paper is summarized in section 5, where we include some discussions
as to what additional aspects, not accounted for in our present formalism, may be needed in
order to capture fully the physics of NiO.

2. Formalism

We start with a key assumption of a timescale separation between that associated with fast
electronic motions, i.e. the electron hopping timescale, and that characteristic of typically much
slower spin fluctuations. At an intermediate timescale well defined moments exist at all lattice
sites, the orientations of which we describe using a set of unit vectors, {êi}. The local moment
phase space specified by {êi} is assumed to be ergodic and hence long time averages can be
replaced by ensemble averages. These averages use the Gibbsian measure

P({êi}) = Z−1 exp[−β�({êi})], (1)

where the partition function, Z , is given by

Z =

∏
j

∫
dê j exp[−β�({êi})] (2)

and β = (kBT )−1. �({êi}) is a ‘generalized’ grand potential, the term ‘generalized’ meaning
that �({êi}) is not associated with a thermal equilibrium state.

In the DLM approach [2, 4], a mean-field approximation for �({êi}) is constructed by
expanding it about a single-site reference spin Hamiltonian, �0({êi}) = −

∑
i hi ·êi . Here, the

parameters hi play the role of a Weiss field and are determined using a Feynman variational
approach [14], whereby the free energy of the system, F = −β−1log Z , is minimized. This free
energy takes into account both the entropy associated with transverse spin fluctuations and also
the production of electron–hole pairs associated with Stoner excitations.
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The probability function, P0, associated with �0 can be written as a product of single-site
measures:

P0({êi}) =

∏
i

Pi(êi), (3)

where

Pi(êi) = Z−1
i exp[βhi ·êi ] (4)

and

Z i =

∫
dêi exp[βhi ·êi ]. (5)

Specifying these single-site probabilities, Pi , means that a class of mean-field theories,
developed originally for the study of substitutionally disordered alloys, becomes available
to us to treat the local moment disorder. In particular, we deploy the coherent potential
approximation (CPA) [15], which is known to be the best single-site approximation. Here, an
effective medium is specified. The motion of an electron through this medium approximates, on
average, the motion of an electron in the disordered lattice. This effective medium is determined
self-consistently and in the context of multiple-scattering theory, i.e. the so-called KKR-
CPA [16, 17], the self-consistency condition states that there should be no further scattering
of an electron, on average, when a single site in the effective medium is replaced by one
of the constituent ‘alloy’ potentials. For the local moment disorder, this condition reads
mathematically as∫

dêi Pi(êi)D̃i(êi) = 1̃, (6)

where quantities with a tilde superscript ( ˜ ) are 2 × 2 matrices in spin space and D̃i(êi) are the
so-called CPA projectors, defined by (in L(≡ l, m) representation)

D̃i(êi) = [1̃ + ((t̃(êi))
−1

− (t̃ c
i )

−1)τ̃ c,00]−1. (7)

Here, the single-site matrix t̃(êi) describes the scattering from a site with local moment
orientated in the direction êi such that

t̃i =
1
2(t+ + t−)1̃ + 1

2(t+ − t−)σ̃ · êi , (8)

where σ̃x , σ̃y and σ̃z are the three Pauli spin matrices defined according to the global z-axis. In
the local reference frame, where the z-axis is aligned with êi , we evaluate the matrices t+/t−,
representing the scattering of an electron with spin parallel/antiparallel to the local moment
direction êi . These matrices are calculated according to

t+(−)L(ε) = −
1

√
ε

sin δ+(−)L(ε)eiδ+(−)L (ε), (9)

where the phaseshifts δL(ε) are computed using effective DFT potentials. These effective
potentials, v+ and v−, differ on account of the ‘local exchange splitting’ [2], which is the cause
of the local moment formation. Unlike the conventional LSDA implementation, the potentials
v+/v− are orbital dependent in our new SIC-LSDA approach. This dependence comes about by
our self-interaction (SI)-correcting certain L channels, the details of which can be found in [10].
Importantly, the SI-corrected channels of v+ and v− may differ. Indeed the valence channels to
which we apply the SI correction are those with a resonant phase shift [9, 10]. Such resonant
behaviour is characteristic of well localized electron states, which will establish quasi-atomic
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like moments. Through the influence they exert on the electron motions, these moments will
be reinforced by the spins of more itinerant-like electrons. It thus follows that resonant states
will tend to define the local moment orientation and, as such, we expect to SI-correct a greater
number of channels of v+ than we do for v−.

t̃ c
i describes a site of the CPA effective medium. The scattering-path matrix, τ̃ (where

underlined matrices are in site representation), is related to the single-site scattering matrices
t̃ via

τ̃ (ε) = [t̃−1
(ε) − g(ε)1̃]−1, (10)

where ε is a complex energy and g is the structural Green’s function, which describes the free
propagation of an electron between scattering centres.

In the paramagnetic regime, t̃c = tc1̃ and τ̃ c,00
= τ c,001̃, the local moments have no

preferred orientation and the Pi become site independent. Moreover using equation (8), we
find

D̃0
i =

1
2(D0

+ + D0
−
)1̃ + 1

2(D0
+ − D0

−
)σ̃ · êi , (11)

where

D0
+(−) = [1 + [(t−1

+(−) − (t c)−1]τ c,00]−1. (12)

The superscript 0 signifies that the CPA projector is evaluated in the paramagnetic state.
Substituting Pi(êi) = P0

=
1

4π
into equation (6), we obtain

1

4π

∫
dêi D̃0

i (êi) = 1̃, (13)

which becomes, on carrying out the integration,
1
2 D0

+ + 1
2 D0

−
= 1. (14)

Equation (14) is evidently just the CPA equation for a system with 50% of moments
pointing ‘up’ and 50% pointing ‘down’, i.e. an Ising-like system. The electronic structure
problem is thus reduced to that of an equiatomic binary alloy, where the two ‘alloy’ components
have anti-parallel local moments. Treating this ‘alloy’ problem with the KKR-CPA, in
conjunction with the LSIC charge self-consistency procedure outlined in [9, 10], we arrive at a
fully self-consistent LSIC-CPA description of the DLM paramagnetic state.

It should be noted that the equivalence of the DLM electronic structure problem to that of
an Ising-like system is purely a consequence of the symmetry of the paramagnetic state, and is
not the result of our imposing any restriction on the moment directions. Indeed, in the formalism
for the paramagnetic spin susceptibility, which we outline now, we maintain and consider the
full 3D orientational freedom of the moments.

Within the DLM method the magnetization at a site Mi is given by Mi = µmi , where
mi =

∫
dêi Pi(êi)êi and µ is the local moment magnitude, determined self-consistently. In the

paramagnetic regime, where Pi is independent of êi , Mi = 0. Using a perturbative approach, we
investigate the onset of magnetic order, where Mi = 0 becomes finite. In particular, we consider
the response of the paramagnetic state to the application of an external, site-dependent magnetic
field. Focusing on the dominant response of the system to line up the moments with the applied
field, we obtain the following expression for the static spin susceptibility:

χi j =
β

3
µ2

i δi j +
β

3

∑
k

S(2)

ik χk j , (15)
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where S(2) is the direct correlation function for the local moments, defined by

S(2)

ik = −
∂2

〈�〉

∂mi∂mk
. (16)

In the paramagnetic state, S(2)

ik depends only on the vector difference between the positions
of sites i and k. A lattice Fourier transform can hence be taken of equation (15), giving

χ(q) =
1
3βµ2

[
1 −

1
3βS(2)(q)

]−1
. (17)

An expression for S(2)(q), involving scattering quantities obtained from the electronic structure
of the paramagnetic state, can be found in [18].

By investigating the wavevector dependence of the susceptibility we gain information
about the spin fluctuations that characterize the high temperature paramagnetic state.
Conversely, most first-principles calculations for the TMOs have, up to now, concentrated on the
ground state. These T = 0 calculations have demonstrated the importance of including strong
electron correlation effects. In particular, for conventional LDA calculations, in which such
effects are neglected, the size of the ground state magnetic moments are found to be substantially
underestimated. When the effects of strong Coulomb repulsion between electrons occupying
the partially filled d states are taken into account, such as through the SI correction [7, 8, 13]
or LDA + U method [19], the resulting moments are found to be in much better agreement with
the experiment.

In some respects, the incorporation of correlation effects is even more important when
dealing with finite temperatures. In particular, it is essential to describe the localized nature
of the d states in order that local moments survive into the paramagnetic phase. Indeed, when
strong correlation effects were neglected in our DLM calculations we were not able to stabilize
a local moment for NiO. For the other TMOs a local moment could be stabilized but, contrary
to experimental observations, a large magnetovolume effect was exhibited.

Recently, using the LDA + DMFT method [20], it was shown how, by taking suitable
account of strong electron–electron correlations, a reasonable description of the electronic
spectrum of NiO in its paramagnetic state can be obtained [21]. In another LDA + DMFT
study [22], in addition to NiO, calculations for other TMOs have also been performed. Our
DLM-SIC investigation of the TMO series, which we go on to describe now, focuses on the
onset of magnetic order and can be considered equivalent to these studies, but without quantum
fluctuations. In particular, we concentrate on the energy scales associated with magnetic (spin)
fluctuations, enabling us to obtain estimates of the Néel temperatures, and we investigate the
importance of the dynamical quantum fluctuations.

3. MnO

In this section, we discuss in detail our calculations for MnO. Using the LSIC-CPA approach
outlined in section 2, we perform an electronic structure calculation for the paramagnetic state.
We use the atomic sphere approximation (ASA) with a unit cell that has, in addition to a
manganese and an oxygen ion, two empty spheres so as to obtain a better representation of the
charge density and space filling. Daene et al [10] compare the energies of the TMOs for specific
magnetically ordered states at T = 0 K between different SIC configurations corresponding to
different numbers of localized states. The configuration of lowest energy is determined by the
balance between localization (SI) and band formation (hybridization) energy. We follow the
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Figure 1. The local DOS for MnO in its paramagnetic (DLM) state on Mn (full
line) and O sites (dashed). The upper (lower) panel shows the DOS associated
with electrons with spins parallel (anti-parallel) to the local moment on the site.
Note that a sizeable gap persists in the paramagnetic state.

same procedure here, but for the high temperature paramagnetic state. For MnO, we find the
energy to be minimized when all Mn d states with spins parallel to the local moment direction
are SI-corrected, with none corrected in the opposite spin channel. This picture is in keeping
with Hund’s first rule.

In figure 1, we show the local density of states (DOSs), where an exchange-splitting is
evident. Of course, when an average is taken over all spin orientations, the electronic structure
does not have an overall spin polarization. Nevertheless, it is possible to identify such ‘local
exchange splitting’ experimentally, using photoemission [23] and inverse photoemission [24]
techniques. The local moment obtained for the Mn sites in the DLM paramagnetic state differs
from that in the ground state by ≈0.03µB (see table 1). Such a small change between the ordered
(zero temperature) and disordered (high temperature) states justifies our DLM picture, where the
magnitude of the ‘local exchange splitting’ is independent of the orientational configurations of
the moments. Furthermore, this feature causes the spin-summed electronic structure to show
little difference between the paramagnetic state above TN and the magnetically ordered ground
state. Notably a sizeable band gap at the Fermi energy persists into the paramagnetic phase.

Figure 2 shows the electronic structure of the paramagnetic (DLM) state in more detail
and demonstrates the wavevector, k, dependence of the local exchange splitting. This figure
is constructed from calculations of the Bloch spectral function, AB(k, E). For non-interacting
electrons in an ordered system at T = 0 K, AB(k, E) comprises a set of Dirac delta functions
which trace out the electronic band structure. When electron interaction, finite temperature or
disorder effects are included the spectral function is a set of broadened peaks describing quasi-
particle excitations. The broadening of the peaks shown in figure 2 is a consequence of the local
moment disorder in the paramagnetic state [27].
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Table 1. Local magnetic moments and Néel temperatures for the series of TMOs,
obtained from our DLM-SIC calculations. The magnetic moments are compared
to those obtained in [10] for the ground state (AF2) configuration. Values
not enclosed (enclosed) in round brackets were calculated using theoretical
(experimental) lattice parameters. The variation of the Néel temperatures with
respect to changes in the lattice spacing is also given.

Compound

MnO FeO CoO NiO

Local magnetic moment on TM (µB)
DLM 4.63(4.63) 3.69(3.68) 2.71(2.71) 1.72(1.71)
AF2 4.60(4.60) 3.68(3.66) 2.69(2.68) 1.68(1.67)
Expt (AF2) 4.79a , 4.58a 3.32a 3.35b, 3.8a 1.77a , 1.64a , 1.90a

Néel temperature (K)
Theory (ASA) 102(103) 148(170) 228(250) 344(367)
Theory (MT) (129) (203) (283) (383)
Exptc 118 198 291 525

∂TN
∂lat (K au−1) −225 −270 −318 −376

aTaken from [7], for detailed references see references therein.
bKhan and Erickson [25].
cKittel [26].

Figure 2. The electronic structure for MnO in its paramagnetic (DLM) state
along symmetry directions. The loci of the peaks of the Bloch spectral function
are displayed and the shading shows the broadening of these quasi-particle peaks
caused by the spin fluctuation disorder.
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Figure 3. Paramagnetic spin susceptibility of MnO, as a function of wave-
vector k.

In figure 3, we present the results of our paramagnetic spin susceptibility calculations for
MnO. These show the paramagnetic state to be dominated by spin fluctuations with wavevector
qmax = (0.5, 0.5, 0.5) (in units of 2π/(lattice constant)). This indicates that the system will order
into an antiferromagnetic type II (AF2) structure, where moments within a 〈111〉 layer are
aligned but are antiparallel in successive layers. This concurs with the experimentally observed
ground state of this system and also T = 0 K calculations [7, 8, 10], where the most stable
structure was determined by comparing the total energies of different magnetic configurations.

We examine the temperature dependence of the static spin susceptibility χ(qmax), in
particular looking for a divergence which would signify that the paramagnetic state becomes
unstable with respect to the formation of a spin density wave, characterized by the wavevector
qmax. For the theoretical (experimental) lattice parameters, such a divergence occurs at 102 K
(103 K). This mean field estimate of the Néel temperature is in good agreement with the
experimental value of 118 K (see table 1).

4. TMO series

In this section, we extend our study to the other TMOs which also occur in the cubic rocksalt
structure above the Néel temperature, namely FeO, CoO and NiO. We find the energies to
be minimized when all TM d states with spins parallel to the local moment direction are SI-
corrected together with one, two and three t2g d-states corrected in the opposite spin channel
for FeO, CoO and NiO, respectively. This is again in accord with Hund’s rule. The magnetic
moments obtained are listed in table 1 and are found to agree closely with their ground state
values. This concurs with experimental data for NiO [28], where the local moment size remains
essentially unchanged as the Néel temperature is passed through. Indeed, more generally, the
transition between the magnetically ordered and disordered phases is known to have little effect
on the valence band photoemission spectra [29], and this is reflected in our spin-summed DOSs
which hardly change between the paramagnetic state above TN and the magnetically ordered
ground state at T = 0 K. The insulating gaps of the paramagnetic DLM states are also very
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close in magnitude to those found in our calculations of the magnetically ordered states [10].
We find the gap sizes, in electron volts, of the paramagnetic states to be 3.3 (3.7) for MnO (see
figures and 1 and 2), 3.5 (2.5) for FeO, 2.8 (2.4) for CoO and 3.8 (4.1) for NiO, where the
experimental values shown in brackets are taken from the summary in [7] and also [30].

Our paramagnetic susceptibility calculations indicate that, like MnO, the other members
of the TMO series have a tendency to order into the AF2 structure. The temperatures at which
we predict this ordering to occur are listed in table 1, where we find good agreement with the
experiment, with the exception of NiO where we underestimate the temperature by about a third.
Interestingly, the Heisenberg mean-field results from a recent investigation of the TMOs [31],
where a Hartree–Fock treatment of the electrons was used [43], show a similar discrepancy
for the Néel temperature of NiO. Also, recent quasi-particle self-consistent GW [32] results
for MnO and NiO show similar behaviour. This suggests that some additional physics, not at
work in the other TMOs, may be of relevance to the determination of the ordering temperatures
of NiO. We return to discussing this point in section 5. In table 1, we also give the Néel
temperatures obtained from a muffin-tin (MT), as opposed to an ASA, implementation of our
electronic structure scheme. Qualitatively, the trend in temperatures is the same, although the
MT implementation gives generally better agreement with the experiment.

5. Conclusion

We have used a locally SIC implementation of the DLM model to study the onset of magnetic
order in MnO, FeO, CoO and NiO. Specifically, by taking into account the strong intrasite
Coulomb correlations between the 3d electrons through SIC, we obtained an accurate first-
principles, finite temperature description of the paramagnetic state. We found, in agreement
with recent DMFT studies of Ren et al [21] and Wan et al [22], that the paramagnetic state
from our DLM-SIC study is characterized by a large insulating gap (see figures 1 and 2 for
MnO). We conclude that this gap is the consequence of the strong electronic correlations in the
paramagnetic state which the DLM-SIC describes particularly well without the need to include
dynamical fluctuations. Also the local moment obtained for the transition metal sites in the
DLM-SIC paramagnetic state differs little from that in the ground state (e.g. by ≈0.03µB for
MnO). We also see from the present work that the magnetic order in the AF2 ground state has
no significant influence on the spin-summed electronic structure of NiO. This is consistent with
our previous results that the band gaps of AF1, AF2 and F magnetically ordered NiO differ only
slightly [13] mostly on account of changes in hybridization. With the successful application of
the DLM-SIC to the TMOs we have been able to demonstrate that it is a generalized framework,
capable of computing finite temperature magnetic interactions for correlated systems as well as
the itinerant systems [2, 4], where the SIC reduces to LSDA.

The underlying magnetic ordering tendencies that our DLM-SIC study revealed were found
to be in agreement with the experimentally observed magnetic ground states. The corresponding
Néel temperatures were, with the notable exception of NiO, also in good agreement with
the experiment. In order to begin to understand our theoretical underestimate of the Néel
temperature of NiO, it is informative to look at the Néel temperatures of each of the TMOs
as a function of lattice spacing. We found the temperatures to vary approximately linearly with
lattice spacing and, as shown in table 1, this dependence becomes more pronounced as the
TMO series is crossed. This in turn implies that, as the series is crossed, the Néel temperatures
become more sensitive to the underlying electronic structure. In particular, the hybridization
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between the strongly-correlated d states and the exchange-mediating oxygen (s and p) sites
becomes more delicate. This suggests that some of the error in the Néel temperature might be
due to the incorrect positioning of these states. Indeed, although the LSIC does a much better
job than the LDA at reproducing the insulating gaps of TMOs, the LSIC band gaps reported
in [10] and here, although qualitatively correct, are in disagreement with the experiment by up
to 40% (FeO). In the recent LDA + DMFT study of Ren et al [21], the band gap of NiO was
reproduced with very high accuracy, of course subject to an appropriate choice of the Hubbard
U parameter. In that investigation a dynamic self-energy was used to incorporate correlation
effects in contrast to the static self-energy used in the SIC approach. Our DLM treatment of
essentially transverse magnetic fluctuations can also be considered as the static limit of some,
as yet undeveloped, dynamical mean field theory of spin fluctuations. Since, however, we deal
with temperatures where the dynamics of transverse spin fluctuations should not be important,
our static treatment of these electronic degrees of freedom is a reasonable approximation. The
effects of the faster dynamical charge correlations and longitudinal spin fluctuations, on the
other hand, may be significant even at high temperatures and a more sophisticated account of
these might therefore improve our estimate of the Néel temperature in due course.

In this paper, we have focussed on the paramagnetic states of the TMOs. Here, the crystal
structure is that of a cubic rock salt. It has been well-documented [33, 34] how the establishment
of AF2 magnetic order prompts a distortion of the crystalline lattices in these materials below
TN. By including relativistic effects, such as spin–orbit coupling, into our description of the
TMOs in principal it should be possible to deduce how these magnetostrictive effects arise at
TN as the symmetry is broken. The inclusion of spin–orbit coupling would also determine how
the magnetic moments orient with respect to the crystal lattice as magnetic order develops
[35, 36] This fundamental approximation made in our investigation of the neglect of spin–orbit
coupling needs some further comment. For transition metals this is a good approximation since
crystal field effects quench the 3d orbital moments [37]. In TMOs, however, strong Coulomb
correlations can lead to a reduction of these crystal field effects and hence a preservation
of the orbital moment. Indeed, the presence of an orbital moment in CoO has long been
established [38]. Recent experimental [39] and theoretical [40] works have suggested that a
significant orbital moment is also exhibited by NiO, with an orbital to spin angular momentum
ratio as high as L/2S = 0.17 [39]. There are important implications associated with the
presence of an orbital moment, in particular with regards to which orbitals are occupied.
More specifically, for a doublet ground state the orbital angular momentum is completely
quenched [41] and hence the presence of an orbital moment means that the d states cannot
be in a pure (t2g)

6(eg)
2 configuration. A recent experimental study of NiO [42] has suggested

that, in the ground state, there is a fractional occupation of orbitals by unpaired spin electrons.
Due to a very slight rhombohedral distortion, brought about by antiferromagnetic ordering,
the symmetry changes from cubic to rhombohedral below the Néel temperature. As a result,
the t2g orbital splits into a single ag and doubly degenerate eg level, with the original eg level
retaining its symmetry characteristics but renamed e′

g. In [42] it was reported that the ag level
has a partial filling of 1.69, giving rise to an orbital moment µL = 0.31µB. In our calculations,
although we allow the energetics to determine the orbital configurations, we are restricted to
integer occupancies of the SIC, localized, orbitals. In order to consider fractional occupancies
it is feasible to use the CPA to describe a random distribution of orbital configurations,
analogous to our treatment of random moment orientations described in section 2. Through
careful choice of the probabilities associated with the different orbital configurations, various
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fractional occupancies can be mimicked to be followed by an investigation of orbital ordering
in the TMOs. This type of study is being planned and holds promise for a further contribution
to the understanding of these materials.
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