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Abstract

This work reviews recent progress in the analytical treatment of correlated few-body Coulomb continuum systems.

Appropriate curvilinear coordinates for the representation of such systems are discussed and their usefulness is dem-

onstrated. Approximate methods for dealing with the short-range dynamics are brie¯y discussed. Ó 1999 Elsevier

Science B.V. All rights reserved.
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1. Introduction

The di�culties in the theoretical treatment of
dissociative reactions involving few charged par-
ticles stem from the inherent non-separability of
many-body interacting systems. In addition, such
treatments are hampered by the in®nite range of
the Coulomb interaction that precludes free as-
ymptotic states and hence limits seriously the ap-
plicability of standard methods of scattering
theory. Thus, in recent years, much e�orts have
been focused towards a direct (approximative)
solutions of the Schr�odinger equation in the frag-
mentation channel without going through the
procedures of scattering theory [1±11]. Such solu-

tions, though cumbersome to derive, yield a direct
insight into the momentum- and con®guration-
space distributions of the fragments. As shown
below, the essential point in deriving useful ex-
pressions for the eigenstates of the many-body
Hamiltonian is the choice of appropriate coordi-
nates that already contain some characteristics of
the Coulomb forces.

2. Two-body Coulomb scattering

To sense the ``natural'' coordinates for frag-
mentation processes involving Coulomb potentials
it is instructive to consider the non-relativistic
scattering of two charge particles with charges Z1

and Z2. The Schr�odinger equation describing the
motion in the two-particle relative coordinate r is
(atomic units are used throughout)
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Wk�r� � 0: �1�

Here k is the momentum conjugate to r and
E � k2=2l is the energy whereas l is the reduced
mass. To decouple kinematics from dynamics we
make the ansatz:

Wk�r� � eik�r �Wk�r�: �2�

The e�ect of the potential is totally described by
the term �W in Eq. (2). To inspect the asymptotic
properties of Eq. (2) we substitute Eq. (2) in Eq.
(2) and disregard terms that fall o� faster than the
Coulomb potential which yields the equation�
ÿ i

l
k � r � Z1Z2

r

�
�Wk�r� � 0: �3�

This equation can be solved by the ansatz
�W � exp�i/� which, upon insertion in Eq. (2),
leads to the Coulomb-phases

/�k �r� � �
Z1Z2l

k
ln a�r � k̂ � r�: �4�

The factor Z1Z2l=k is called the Sommerfeld pa-
rameter and is an indicator for the strength of the
interaction. The integration constant a has a di-
mension of a reciprocal length and is usually set to
be a � k. The key point for the present work is
that the coordinate inherent to Coulomb scatter-
ing is the so-called parabolic coordinate r � k̂ � r
where the � or ÿ sign should be chosen if one is
dealing with incoming or outgoing-wave boundary
conditions.

3. Three-body Coulomb scattering

For three-body systems the situation is much
more complex since the Schr�odinger equation is
not separable. Nonetheless, as a ®rst step, one
might think of a three-body systems as the sub-
sume of three non-interacting two-body subsys-
tems [4±6]. Since we know the appropriate
coordinates for each of these two-body subsys-
tems, as illustrated above, the obvious choice of
coordinates would be

n�k
n
� rij � k̂ij � rij

o
; �ijk 6� 0; j > i; k 2 �1; 3�;

�5�
where rij is the position of the particle i relative to
the particle j and k̂ij denote the directions of the
momenta kij that are conjugate to rij. Since we are
dealing with a six-dimensional problem three other
independent coordinates are needed in addition to
Eq. (5). To make a reasonable choice for these
remaining coordinates we remark that, usually, the
momenta kij are determined experimentally, i.e.
they can be considered as the laboratory-®xed
coordinates. In fact it can be shown that the co-
ordinates Eq. (5) are related to the Euler angles.
Thus, it is advantageous to choose body-®xed co-
ordinates. Those are conveniently chosen as

fnk � rijg; m 2 �4; 6�: �6�

Upon a mathematical analysis it turned out that
the coordinates (Eqs. (5) and (6)) are linearly
independent [4±6] except for some singular points
where the Jacobi determinant vanishes. The main
task is now to rewrite the three-body Hamilto-
nian in the coordinates (Eqs. (5) and (6)). After
factoring out the trivial plane-wave part (as done
in Eq. 2)) it turns out that the three-body wave
function is determined as an eigensolution of
an operator H with zero eigenvalue [4±6]. The
di�erential operator H, expressed in the curvili-
near coordinates (Eqs. (5) and (6)), has the
structure

H � Hpar � Hint � Hmix: �7�

The operator Hpar is di�erential in the parabolic
coordinates n1;2;3 only, whereas Hint acts on inter-
nal degrees of freedom n4;5;6. The mixing term Hmix

arises from the o�-diagonal elements of the metric
tensor and plays the role of rotational coupling in
a hyperspherical treatment. The essential point is
that the di�erential operators Hpar and Hint are
exactly separable in the coordinates n1...3 and n4...6,
respectively, for they can be written as [4±6]:

Hpar �
X3

j�1

Hnj ; �Hnj ;Hni � � 0; 8i; j 2 f1; 2; 3g;

�8�
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and

Hint �
X6

j�4

Hnj ; �Hnj ;Hni � � 0; 8i; j 2 f4; 5; 6g;

�9�
where

Hnj �
2

llmrlm
@njnj@nj

� � iklmnj@nj ÿ llmZlm

�
;

�jlm 6� 0; j 2 f1; 2; 3g �10�
and
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In the equations above the reduced mass of the
pair ij is denoted by lij and their product charge by
Zij. The operator Hmix � H ÿ Hpar ÿ Hint derives
from the expression

Hmix :�
X6

u6�v�1

�rrijnu� � �rrijnv�
�

� �rRk nu� � �rRk nv�
	
@nu@nv ; �12�

where Rk indicates the position of the center of
mass of the pair ij with respect to the particle k.

Noting that Hnj ; j � 1; 2; 3 is simply the
Schr�odinger operator for two-body scattering re-
written in parabolic coordinates (after factoring
out the plane-wave part), one arrives immediately,
as a consequence of Eq. (8), at an expression for
the three-body wave function as product of three
two-body continuum waves, provided that Hint

and Hmix are negligible. Fortunately, it turns out
that the matrix elements of Hint and Hmix are in fact
small compared to those of Hpar in case of large
interparticle separations [4±6]. It should be em-
phasized, however, that this ``asymptotic separa-
bility'' is not the result of using the coordinate
system (5). It is only that the operator Hpar attains
in the coordinates (5) a very simple and transpar-
ent form for an arbitrary three-body system. In
fact, this same operator Hpar has a much more

complex representation in the usual Jacobi coor-
dinates (cf. Refs. [4±6]).

When all particles are close to each other the
terms Hint and Hmix becomes more important. In
fact, the eigenfunctions of Hpar are shown to be at
variance (cf. Refs. [4±6]) with the Fock expansion
that has to be satis®ed at the three-body collision
point.

3.1. Three-body coupling in position space

The asymptotic properties of the eigenfunctions
of Hpar are of limited interest when it comes to
evaluating reaction amplitudes, for in this case an
adequate description of the short-range dynamics
is imperative. In fact such amplitudes involve the
many-body scattering state in the entire Hilbert
space. Moreover, in many processes, the reaction
zones are con®ned to a small region around the
origin where all particles are close together. Thus
we are obliged to search for solutions that diago-
nalize, at least, some parts of Hint and Hmix in ad-
dition to Hpar. This can be done in di�erent ways
depending on the speci®c process under consider-
ations and the degree of complexity one is able to
handle when calculating numerically the transition
amplitudes.

One method that turned out to be particularly
e�ective relies on the following observations: (a) in
a three-body system the two-body potential Zij=rij

have no speci®c physical meaning since the parti-
cles move according the total-potential surface. (b)
For this reason the total potential can be split
arbitrarily keeping its total value unchanged. (c)
To keep the structure of the operators (Eqs. (8)
and (10)) unchanged and to introduce a splitting of
the total potential that is rotationally invariant one
can assume the strength of the individual two-
body interactions, characterized by Zij, to be de-
pendent on n4;5;6. This means we introduce variable
product charges as

�Zij � �Zij�n4; n5; n6�; �13�
withX3

j>i�1

�Zij

rij
�
X3

j>i�1

Zij

rij
: �14�
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The simplest way to obtain �Vij :� ��Zij�=�rij� is to
assume them as a linear mixing of Vij :� �Zij�=�rij�,
i.e.

V 23

V 13

V 12

0@ 1A �A
V23

V13

V12

0@ 1A; �15�

where A�n4; n5; n6� is a 3� 3 matrix. Then the
matrix elements have then to be determined ac-
cording to the properties of the total potential
surface and, if possible, as to minimize Hint and
Hmix. Till now, this has been done for the case of
two electrons moving in the ®eld of a residual ion
[4±6]. The results for a variety of scattering systems
and geometries are encouraging (cf. Ref. [12] and
references therein). In Fig. 1(a)±(c) some examples
for the electron-impact ionization are depicted that
clearly show the importance of three-body cou-
pling as described by Eq. (15).

3.2. Three-body coupling via momentum exchange

The obvious shortcoming of the three-body
coupling scheme Eq. (15) is that one has to derive
A for each speci®c scattering system which is a
painstaking procedure. An alternative way of
coupling the three two-body subsystems relies on
the following observations. In a scattering experi-
ment the measurable quantities (observables) are
the asymptotic momenta kij of the emerging reac-
tion fragments. In the ``reaction zone'' these
quantum numbers are undetermined. To quantify
this picture we de®ne, following the treatment of
Wannier [16±18], an inner Coulomb zone and an
outer far zone depending on whether the total
potential or the kinetic energy is the dominant
quantity. As is well known [16±18], the boundary
between these regimes is the Wannier radius Rw

which is a scalar quantity. In the Coulomb zone a
two-body subsystem ij can assume any two-body
quantum state de®ned by a particular k0ij, i.e. each
two-body subsystem propagates o� the two-body
energy shell, as de®ned by the (asymptotic) mea-
surement process. The description of this is well
facilitated by (Eqs. (8) and (10)) since the mo-
menta kij enter in Eq. (10) as dummy parameters
and are determined only by the asymptotic boun-

Fig. 1. The fully di�erential cross section for the electron-im-

pact ionization of atomic hydrogen in the co-planar, asym-

metric energy-sharing geometry. The incident energy is

Ei � 27:2 eV. The fast scattered electron is detected at an angle

Ua with respect to the incident direction Ua � 16o (a), Ua � 23o

(b) and Ua � 30o (c). The angular distribution of the secondary

electron with ®xed energy of 4 eV is measured. The emission

angle of the latter electron with respect to the incident direction

is denoted by Ub. Experiments are courtesy of Ref. [22]. The

solid lines show the predictions of the theory employing the

matrix A (cf. Eq. (15)) as given in Ref. [12] whereas the dotted

curves indicate the results when using A � 1.
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dary conditions and the total energy conservation.
However, to ensure the invariance of the
Schr�odinger equation under the introduction of
intermediate momenta k0ij, we must operate under
the constraint that the total energy E is conserved.
This means that the two-body subsystems ex-
change an inde®nite amount of momentum in the
momentum-exchange zone and virtually occupy all
(two-body) continuum states available in the en-
ergy band �0;E�. As the system evolves towards the
Wannier boundary Rw the reaction fragments take
on the (asymptotic) momenta measured in a scat-
tering reaction. To put the preceding in a mathe-
matical language we note that Eqs. (10) contain
the magnitudes of the momenta kij parametrically.
Within the present model, however, the directions
k̂ij are ®xed by the (asymptotic) boundary condi-
tions (compare Eqs. 5))]. As mentioned above, the
exact normalized eigenfunctions Wpar�n1���6; k0ij� of
Hpar are known and characterized by k0ij, or
equivalently by k02ij =2lij � E0ij 2 �0;E�. Thus, the
general solution in the inner zone is a linear su-
perposition of Wpar�n1���6; k0ij�:

Win�n1...6� �N

Z
d3k0ij Ak0ij�n4���6�Wpar�n1���6; k0ij�

d�E ÿ E0�d2�k̂ij ÿ k̂0ij�; �16�

where E0 is the intermediate total energy deter-
mined by k0ij. It is readily veri®ed that the function
(16) is an eigenfunction of the total Hamiltonian
under the approximation H � Hpar. To account for
the neglected part H ÿ Hpar � Hint � Hmix the ex-
pansion coe�cients Ak0ij�n4...6� have to be deduced,
e.g. variationally. For many-body continuum
states, however, this procedure is intractable. In
the context of this work Ak0ij�n4...6� derives, how-
ever, from the observation that the wavefunction
(16) is needed only in the reaction zone whose
boundary is ®xed by Rw.The Wannier radius Rw,
however, scales inversely with E [17,18]. Hence, the
determination of Ak0ij�n4...6�, and thus of Eq. (16), is
needed only at lower excess energies E
�limE�1 Rw ! 0). Assuming H � Hpar, we remark
further that the expansion coe�cients Ak0ij�n4...6�
indicate the occupation probabilities for the in-
termediate states characterized by E0ij 2 �0;E�. Ac-
cording to the Wannier threshold analysis [16], the

correlated motion in the interaction region is er-
godic, which implies Ak0ij�n4...6� � 1. This means a
¯at probability distribution of occupying the in-
termediate virtual states in the inner zone.

The wavefunction (16) is asymptotically incor-
rect. Hence, a mapping onto the asymptotic
wavefunction at the boundary Rw is necessary.
Generally, this can be done analogously to the R-
matrix approach [19]. Here we adopt a di�erent
procedure by introducing the exponential match-
ing factor f :� exp�ÿR=Rw� where the extent of
the three-body system is measured by
R :� r12 � r13. The wavefunction in the entire Hil-
bert space is then given by

Wex�n1...6; E� � f Win � �1ÿ f �Wpar�n1...6; kij�:
�17�

First we remark that since Rw and R are scalar
quantities, i.e., they depend on n4...6 only, the
wavefunction Wex�n1...6; E� is an eigensolution of
the total Hamiltonian within the approximation
H � Hpar �

P3
j�1 Hnj . As the wavefunction

Wpar�n1���6; kij� is asymptotically correct for large
interparticle separations [2,4±6] it follows that
these (asymptotic) properties are directly re¯ected
into the wavefunction Wex (since limR�1 f ! 0),
i.e., Wex is asymptotically correct for larger inter-
particle distances. This asymptotic behaviour dis-
tinguishes the present study from conventional R-
matrix methods in which the correct asymptotic
behaviour is not easy to include.

For distances R larger than Rw (f ! 0) we
obtain Wex � Wpar�n1���6; kij� which means that in
the high-energy scattering (Rw ! 0) the escaping
particles directly assume their experimentally
measured momenta. For R < Rw the two-body
subsystems exchange an inde®nite amount of en-
ergy. Of particular interest is the region of low
excess energies where Rw extends to very large
distances R, i.e., f ! 1. In this case the three
particles keep exchange energies up to in®nity for
E! 0 and the transformation of the total wave-
function from Win to Wpar occurs at very large
distances. This has important implications in so
far as, according to Eq. (17), properties of scat-
tering amplitudes which are derived from asymp-
totic wavefunctions are smeared out at threshold.
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A second important conclusion at threshold is that
if we extend the integral in Eq. (17) to run over
bound states as well, the coupling to highly excited
Rydberg states provides the major contribution to
the wavefunction, given by Eq. (17), in agreement
with the Wannier picture of double escape [16±18].

The above formulation can also be done di-
rectly for the T-matrix as shown in Ref. [15]. As an
application of this method let us study the proton
and antiproton-impact ionization of atomic hy-
drogen that leads to a pure three-body continuum
®nal state. The heavy projectile is mainly scattered
into the forward direction and di�erent ionization
mechanisms are distinguished via the particles'
relative velocities (since Zij � �1). The most no-
table di�erence between proton and antiproton
impact appears at a diminishing relative velocity
vector vpe of the projectile-electron system (Fig.
2(a)). This is due to the decisively di�erent ana-
lytical behavior of the projectile-electron density of
state which, for vpe ! 0, is of the form
exp�ÿ1=vep� ! 0 for antiproton and 1=vpe !1
for proton impact [20,21].

The ridge structure in Fig. 2(a) which appears
at an electron velocity equal to twice the projec-
tile's velocity (in the target frame) is due to a direct
projectile-electron encounter [20]. Energy ex-
change e�ects are prominent in the region where a
high-energy electron is ejected backwards (Fig.
2(b)). In this case the electron can not be viewed as
emitted in the ®eld of the target (slow soft elec-
trons) nor in the ®eld of the projectile (Electrons
Captured into the projectile's Continuum, ECC
electrons with vpe ! 0). Further inspection showed
that these electrons are ejected via multiple scat-
tering from both the target nucleus and the pro-
jectile in events with large de¯ection of the
projectile.

The approaches sketched above can be gener-
alized to N-body systems [13] with increasing
complexity of the mathematical analysis.

For highly excited, yet still bound systems dif-
ferent mathematical tools are necessary [14].
Nonetheless it turned out that a number of com-
mon features of the system persist when crossing
the fragmentation threshold.
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