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An ab initio study of magnetic-exchange interactions in antiferromagnetic and strongly correlated 3d tran-
sition metal monoxides is presented. Their electronic structure is calculated using the local self-interaction
correction approach, implemented within the Korringa-Kohn-Rostoker band-structure method, which is based
on multiple scattering theory. The Heisenberg exchange constants are evaluated with the magnetic force
theorem. Based on these the corresponding Néel temperatures TN and spin-wave dispersions are calculated.
The Néel temperatures are obtained using mean-field approximation, random-phase approximation and Monte
Carlo simulations. The pressure dependence of TN is investigated using exchange constants calculated for
different lattice constants. All the calculated results are compared to experimental data.
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I. INTRODUCTION

In the last years there has been a general strong interest in
finding materials with specific or even parametrisable mag-
netic properties. Such materials could be useful in the field of
spintronics. A lot of the promising candidates are strongly
correlated electronic systems which in many ways are still a
challenge to be properly described theoretically regarding
their electronic ground-state properties. On the other hand,
for reliable predictions about magnetic properties of materi-
als, it is essential to have theories describing the magnetism
adequately by quantitative and qualitative means. One of
these theories is the Heisenberg theory of magnetism, which
we shall apply in the present paper. Its central quantities are
the Heisenberg exchange constants Jij, which are of general
fundamental interest. In particular they provide information
about the magnetic periodicity �via their Fourier transform�,
the spin-wave dispersion, magnetic critical temperatures and
also allow predictions on structural effects caused by
magnetism.1,2

In this paper we concentrate on the study of the magnetic
exchange interactions of transition-metal monoxides
�TMOs�, specifically MnO, FeO, CoO, and NiO. They are
charge-transfer insulators, well known for strong correlation
effects associated with the TM 3d electrons. Originating
from the Anderson-type superexchange, their equlibrium
magnetic structures are of the antiferromagnetic II �AFII�
order, characterized by planes of opposite magnetization
which are stacked in �111�-direction. Recently, a Mott tran-
sition has been observed in MnO at high pressure of about
105 GPa, in resistivity3 and x-ray spectroscopy
measurements,4,5 which stimulated new theoretical studies in
this high-pressure region.6,7 There already exists a large body
of neutron-scattering measurements of magnetic structures
and magnetic excitations in transition-metal monoxides.
However, the development of new experimental techniques
such as neutron powder diffraction8–10 and polarized neutron

reflectivity11 has renewed interest in studying TMOs as anti-
ferromagnetic benchmark materials. Modern neutron spec-
trometers operate with such a high efficiency that also high-
angle diffraction experiments can be performed to unravel
complex magnetic order e. g. in thin films.12

From the theory point of view conventional methods such
as the local spin-density approximation �LSDA� to density-
functional theory �DFT�, treating electron correlations at the
level of the homogeneous electron gas, fail to provide an
adequate description of the electronic structure of these ox-
ides. Over the years a number of approaches have been de-
veloped, aiming at improvements to the LSDA treatment of
electron correlations, and applied to TMOs with varying de-
grees of success. Among them are: the LSDA+U
method,13,14 GGA+U,15 self-interaction corrected
�SIC�-LSDA,16–21 hybrid functionals,22,23 and finally dy-
namical mean-field theory.24 In general, they have improved
lattice constants, band gaps and magnetic properties, some of
them have also obtained good agreement with spec-
troscopies.

In the present paper we shall use the so-called local self-
interaction correction25 �LSIC� scheme for the calculation of
the electronic ground states of the TMOs. As the aim is the
investigation of magnetic interactions we combine the LSIC
scheme with the magnetic force theorem �MFT�26 in order to
obtain the Heisenberg exchange parameters Jij.

The LSIC scheme27 is based on the implementation of the
SIC-LSDA formalism16,17,25 within multiple scattering theory
in the framework of the Korringa-Kohn-Rostoker �KKR�
band-structure method. It was first applied to f-electron
systems,27,28 but recently also to TMOs.21 Within the KKR
method one calculates the Green function of the investigated
system. This Green function is then straightforwardly used in
the application of the MFT. This combined approach is ap-
plied for calculating exchange constants of the transition
metal monoxides. The results of that are compared to the
exchange constants extracted from the total-energy differ-
ences for a number of magnetic structures and mapping them
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onto a Heisenberg Hamiltonian. Most of the earlier applica-
tions of the latter approach have been based on the assump-
tion that only the first two exchange interaction constants are
nonzero. Although the present combined approach also relies
on the mapping onto a Heisenberg Hamiltonian the assump-
tions regarding the number of nonzero exchange constants
are not needed, which is advantageous to systems with re-
duced symmetry such as thin films and layered structures
�where the justification for such an assumption is not clear
from the very beginning�.

Having calculated the Jij for the ground states of the
TMOs we also calculate and discuss them as a function of
external pressure for moderate values of the latter. This is
mainly inspired by the recent high-pressure measurements of
TMOs.3–5

Based on the calculated magnetic exchange interactions
the transition temperatures can be obtained. In this paper it is
done in three different ways, namely, by applying mean-field
approximation �MFA�, random phase approximation �RPA�,
and using classical Monte Carlo �MC� simulations. The re-
spective results are then compared to those obtained from the
disordered local moments �DLM� method,29 which does not
involve mapping onto a Heisenberg Hamiltonian, but is
based on the same ground-state electronic structure calcula-
tions as the present paper.21

The last subject we focus on is magnetic excitations. On
one hand, with given Jij, one can calculate the magnon spec-
trum of any material. On the other hand, measuring the latter
experimentally is a direct method to examine its exchange
constants. Thus, comparing calculated to experimental spin
wave dispersions provides a straightforward tool for deter-
mining the accuracy of the calculated Jij.

The present paper is organized as follows: In Sec. II the
theoretical approaches for the calculation of electronic struc-
ture, exchange interactions and Néel temperatures are pre-
sented. The computational details are described in Sec. III.
Section IV contains the results and discussion. The exchange
parameters and the Néel temperatures are presented for the-
oretical equilibrium lattice constants and as a function of
lattice constants and pressure, respectively. Finally, the cal-
culated magnon spectra of the TMOs are discussed in refer-
ence to experiments. The paper is concluded in Sec. V.

II. THEORY

A. Electronic structure

For the electronic structure calculations of TMOs we use
a multiple scattering theory-based implementation of the
SIC-LSDA method,25 whose total-energy functional is

ESIC-LSDA��n���� = ẼLSDA�n↑,n↓� − �
��

�EH�n��

+ Exc
LSDA�n��,0�� , �1�

with the LSDA energy functional in units of Rydberg given
by

ẼLSDA�n↑,n↓� = �
��

����	 − �2	���
 + Eext + EH�n�

+ Exc
LSDA�n↑,n↓� . �2�

Here ��� is a Kohn-Sham orbital, �� a multi-index labeling
the orbitals and spin �↑ or ↓�, respectively, n��= 	���	2, n�

=��n��, and n=n↑+n↓. ẼLSDA differs from ELSDA since the
kinetic energy is evaluated with respect to the orbitals mini-
mizing the SIC-functional. The summations run over all the
occupied orbitals, Eext denotes the external energy functional
due to ion cores, EH is the Hartree energy and Exc

LSDA is the
LSDA exchange-correlation energy functional. The second
term in Eq. �1� is the so-called self-interaction correction25

for all the occupied orbitals �. It restores the property

EH�n�� + Exc
exact�n�,�,0� = 0, �3�

that the exact DFT exchange-correlation functional has,
namely, that for any single orbital density the Hartree term
should be cancelled by the corresponding exchange-
correlation term. The cost paid for restoring the above prop-
erty is the orbital dependence of the SIC-LSDA energy func-
tional �Eq. �1��. The correction is only substantial for
localized-orbital states, but vanishes for itinerant states. In
the limit of all itinerant states the SIC-LSDA total-energy
functional is identically equal to the LSDA functional.

The main idea behind the “local” implementation of the
SIC-LSDA formalism �LSIC� is that within multiple scatter-
ing theory, in the framework of the KKR method, one works
with the scattering phase shifts, describing scattering proper-
ties of single atoms in a solid. Among them only the resonant
phase shifts are relevant, as they refer to localized states.
Thus the self-interaction correction is associated with the on-
site scattering potentials and leads to modified resonant scat-
tering phase shifts. In particular, they become stronger local-
ized. Details of the LSIC implementation are discussed in
Ref. 27.

B. Magnetic interactions

The Heisenberg theory of magnetism assumes that it is
possible to map magnetic interactions in a material onto lo-
calized spin moments, which in a classical picture can be
represented by a vector. The resulting classical Hamiltonian,

H = − �
ij

Jijei · e j , �4�

contains only the unit vectors ei�j� of the spin moments and
the exchange parameters Jij describing the interactions be-
tween them.30 Here i and j index the sites.

It should be mentioned here that the Hamiltonian �4� can
be extended to include additional effects such as magneto-
crystalline anisotropy or tetragonal or rhombohedral distor-
tions of the lattice. The latter reflect magnetoelastic effects
which result in two different values for the nearest-neighbor
�NN� exchange parameters, depending on a parallel or anti-
parallel alignment of the moments. Such effects are usually
present in experiments. Thus, special care is required when
comparing theoretical and experimental results.

FISCHER et al. PHYSICAL REVIEW B 80, 014408 �2009�

014408-2



Our method of choice for the calculation of the exchange
parameters Jij makes use of the magnetic force theorem, but
invokes also mapping onto a Heisenberg Hamiltonian. For
comparison, we also apply the most commonly used ap-
proach which relies on the calculation of total energy differ-
ences between different magnetic configurations and map-
ping them onto a classical Heisenberg Hamiltonian.

1. Magnetic force theorem approach

The idea behind the magnetic force theorem26 is to con-
sider infinitesimally small rotations of classical spins at two
different lattice sites. These give rise to energy changes that
are mapped onto the classical Heisenberg Hamiltonian via
multiple scattering theory. This approach is based on the as-
sumption that the potentials are unchanged by the rotations.
The advantage of the MFT method is that the exchange in-
tegrals can be calculated directly in the relevant magnetic
structure. The result for the exchange parameter Jij of the
two magnetic moments at sites i and j can be written as

Jij =
1

8�
��F

d� Im TrL��i�̂↑
ij� j�̂↓

ji + �i�̂↓
ij� j�̂↑

ji� , �5�

where �̂ij is the scattering path operator between sites i and j
and �i= t̂i↑

−1− t̂i↓
−1, with t̂i being a single scattering operator for

the atom at site i. If not stated otherwise, all the results
discussed later would have been obtained with the exchange
parameters calculated using Eq. �5�.

2. Energy differences approach

In this approach the total energies of the TMOs in the
ferromagnetic �FM� and antiferromagnetic I�AFI� and AFII
configurations are taken into account. The AFI structure is
characterized by oppositely magnetized planes which are
stacked in �100�-direction. Suppose that magnetic interac-
tions operate only between TM atoms—an assumption which
is to be discussed later—the mapping onto the Heisenberg
Hamiltonian yields

J1 =
1

16
�EAFI − EFM� �6�

and

J2 =
1

48
�4EAFII − 3EAFI − EFM� , �7�

where J1 describes the interaction between the NN and J2
that of the next nearest neighbors �see Fig. 1�. This mapping
also assumes that the interaction between NN is independent
of the sublattice the TM atoms are located on. Of course the
choice of the three above mentioned structures restricts one
to the determination of J1 and J2 only. Using more magnetic
structures and hence calculating more exchange parameters
is in principle possible. However, due to the nature of the
present exchange mechanism, the super exchange, this has
usually not been done for the TMOs. Although with this
method we also restrict exclusively to J1 and J2, it is hoped
that the comparison with the MFT method will shed some
light on the validity of the underlying assumptions for the
TMOs.

C. Néel temperatures

Having calculated the exchange parameters for an antifer-
romagnet one is able to calculate the Néel temperatures, TN.
Several different approximations can be used, in particular
the mean field approximation, the random phase approxima-
tion and classical Monte Carlo simulations.

1. Random-phase approximation

In the RPA one solves the equation of motion for the
Green function of the spin operators. Following the approach
of Rusz et al.,31 one ends up with a semi-classical formula
for the average spin polarization �eA

z 
�T� of a sublattice �e.g.,
A�, as a function of temperature T,

�eA
z 
�T� = L� 2

kBT
 1

�
� dq�N−1�q��AA�−1� . �8�

Here L�x� is the Langevin function, L�x�=coth�x�−1 /x, � is
the volume of the first Brillouin zone and kB denotes the
Boltzmann constant. The matrix elements of N�q� are de-
fined as

NAB�q� = 	AB�
C

JAC�0��eC
z 
 − �eA

z 
JAB�q� , �9�

with the Fourier transforms of the exchange parameters
given by

JAB�q� =
1



�
j,k

Jjke
iq·�Rj−Rk�� j

A�k
B, �10�

where 
 denotes the number of interacting magnetic sites and
� j

A equals one if site j is on the magnetic sublattice A and
zero otherwise. Equation �8� has to be solved self-
consistently since the unknown quantity appears on its left
and implicitly also on the right, via N�q�. The Néel tempera-
ture is equal to the highest value of T at which �eA

z 
�T� be-
comes different from zero.

O

O

O

O

O

TM

TM

TM

TM

J2

J1

J1

FIG. 1. �Color online� Schematic representation of the magnetic
interactions in a �100� plane of the rocksalt structure of TMOs. The
TM ions �blue� interact via J1 �dotted arrows� with their nearest and
via J2 �solid arrow� with their next-nearest neighbors. In Anderson’s
superexchange picture the indirect exchange is mediated by O ions
�yellow circles�, resulting in a 90° and a 180° exchange interaction
for J1 and J2, respectively. Note that J1 also contains contributions
from direct overlap.
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2. Mean-field approximation

To obtain the MFA estimate of the Néel temperature, a
matrix � with elements

�AB =
2

3kB
JAB�0� �11�

is constructed,32,33 where JAB�0� stands for the Fourier trans-
form of the exchange parameters, defined via Eq. �10�, at q
=0. The largest eigenvalue of � yields the Néel temperature.
If for any TMO in the AFII structure only the nearest and
next-nearest-neighbor interactions are considered �J1 and J2,
respectively�, then the largest eigenvalue yields the well-
known relation, kBTN=4J2, indicating that the nearest-
neighbor interaction J1 does not have any influence on TN.
Since fluctuations are completely neglected in MFA the re-
sulting Néel temperatures are commonly overestimated.

3. Monte carlo simulations

We give a rather brief summary of the method of MC
simulations as they are performed in this paper. For a deeper
and complete understanding we refer the reader to the book
by Landau and Binder.34

To estimate TN via MC simulations a lattice representing
the structure of the investigated system is constructed. The
magnetic moment at lattice site i interacts with its neighbors
j via the Jij. During a MC run one picks a lattice site j with
the magnetic-moment vector e j, creates a new random direc-
tion e j� and decides by looking at the energy of the system
whether e j� is accepted or e j is kept. Performing this proce-
dure N times on a lattice of N sites is defined as one MC
step.

Starting from a certain initial configuration the system is
brought into thermal equilibrium for a fixed temperature. Af-
ter this, “measurements” and thermodynamical averaging of
the observables of interest are performed. Since it is impos-
sible during a simulation run to go through all possible con-
figurations of the system, which would be formally necessary
for averaging, one must ensure that the configurational sub-
space that one is restricted to is of physical significance. This
is done by performing the so-called importance sampling. It
is applied when one has to decide between the old and new
magnetic moment vectors e j� and e j described above. There
exist several methods to do this, in the present paper the
Metropolis algorithm35 is used.

One must be aware of the fact that the finite size of the
lattice, despite being periodic in all 3 dimensions, leads to a
systematic error in the determination of the critical tempera-
ture. This so-called finite-size effect, however, becomes
smaller with increasing lattice size. It can therefore be elimi-
nated by extrapolating the critical temperatures for different
lattice sizes.

For a magnetic system as in the present case it is straight-
forward to measure two quantities. One is the staggered
magnetization36 ms being some sort of an average of the
absolute values of magnetization of the sublattices,

ms =
1

N
�
j=1

N

e je
iQ·rj . �12�

Here, j labels the lattice sites being N in total, e j is the unit
vector of the magnetic moment at lattice site j and Q is the
normal vector of the planes of equal magnetization, in the
AFII structure being �1, 1, 1� for example. As a note, ms is
used instead of the total magnetization since the latter is
equal to zero in antiferromagnets. The other quantity mea-
sured is the inner, i.e., magnetic, energy of the system E,
which is given by Eq. �4�. This whole procedure of relaxing
into thermal equilibrium and thermodynamical averaging is
repeated for different temperatures. In principle one can de-
termine TN from the slope of the temperature dependence of
ms�T� and E�T�. However, there are quantities that show the
critical temperatures more clearly. These are the magnetic
susceptibility derived from ms, the specific heat derived from
E, and the 4th-order cumulant37 U4. The first two have a
singularity at T=TN, the last one has the property that the
curves U4�T� calculated for different lattice sizes have a
crossing point at T=TN.

4. Quantum effects

As already mentioned, the three approaches described
above are based on mapping of the single magnetic-moment
interactions onto a classical Heisenberg Hamiltonian. These
moments, however, are quantum objects and this should in
some way be accounted for in the calculations. Wan, Yin,
and Savrasov38 and Harrison39 did this by replacing the clas-
sical S2 in the Heisenberg Hamiltonian with the quantum
mechanical expectation value S�S+1�, when calculating
magnetic properties. Since in Eq. �4� S2 is included in the
Jij,

30 then to be consistent, one has to divide again by S2.
This gives rise to a factor �S+1� /S for the energy and, even-
tually, also for the Néel temperature.40 This factor is, how-
ever, not needed when the Néel temperature is obtained
based on the DLM method since it does not explicitely use
the Jij.

D. Magnon spectra

With the exchange interactions determined one can also
calculate the magnon spectra E�q�. They are of special inter-
est since they provide the standard method for determining
the exchange parameters experimentally. The latter would be
done by fitting a Hamiltonian containing the Jij as fitting
parameters to a measured spin wave dispersion. As already
mentioned in Sec. II, such Hamiltonians usually contain
more terms than the one given in Eq. �4�, which is why
comparisons between different Jij results must be done care-
fully.

Considering multiple sublattices one can define magnon
spectra as the eigenvalues of the matrix N�q� given by Eq.
�9�. Assuming two magnetic sublattices, with the same abso-
lute magnetization, and considering only the nearest and
next-nearest-neighbor interactions, the spectra are given
by30,41
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E�q� =
1


��J++�q� − H0�2 − J+−

2 �q� . �13�

Here  is the magnetic moment of the two sublattices in
units of B, J++�q� �J+−�q�� are the Fourier transforms of the
intra-�inter-�sublattice exchange parameters expressed, re-
spectively, as

J++�q� = 2J1 � �cos �a�qy + qz� + cos �a�qx + qy�

+ cos �a�qx + qz�� �14�

and

J+−�q� = 2J1 � �cos �a�qy − qz� + cos �a�qy − qx�

+ cos �a�qx − qz�� + 2J2�cos 2�aqx + cos 2�aqy

+ cos 2�aqz� , �15�

and H0=J++�0�−J+−�0�=−6J2. In Eqs. �14� and �15� the vec-
tor q and accordingly its components are needed in units of
2� /a with a being the lattice constant of the TMO consid-
ered.

III. COMPUTATIONAL DETAILS

The transition metal monoxides crystallize in the rocksalt

structure �B1, Fm3̄m, space group 225�. At low temperatures
they show small lattice distortions ��2%�. However, these
distortions are not considered in the present calculations. The
crystal potentials for the ground state calculations are con-
structed in the atomic sphere approximation �ASA�. The
ASA radii for the TM and oxygen atoms are chosen as
0.2895a, with a being the lattice constant of a given TMO.
To reduce the ASA overlap while keeping a good space fill-
ing, empty spheres are used with the ASA radii equal to
0.1774a. The ratios of the respective ASA radii are kept con-
stant across the TMO series.

For the electronic structure calculations the complex en-
ergy contour has 24 Gaussian quadrature points, and for the
Brillouin zone �BZ� integrations a 14�14�14 k-points
mesh is constructed. For the calculation of the magnetic in-
teractions, using the MFT, 60 energy points on a Gaussian
mesh in the complex plane are chosen. Convergence of the
Jij with respect to the number of k points is achieved with a
20�20�20 k-points mesh per energy point for the first 50
of them, and a 60�60�60 k mesh for the last 10 energy
points, lying close to the Fermi energy.

For the MC simulations an fcc lattice representing the
transition metal atoms in the TMO crystal is constructed. To
avoid finite-size effects, the size of the lattice is varied from
40�40�40 to 60�60�60 elementary fcc cells. To use all
observables described in the MC part of Sec. II one has to
restrict the simulations to a relatively small number of MC
steps. This is necessary in order to prevent the system from
changing the orientation of the ferromagnetic sublattices, for

example from �111� to �1̄11�, which are degenerate in energy.
Thus, starting from the AFII state, the system is assumed to
have reached thermal equilibrium after 5,000 MC steps, and
for averaging 10 000 MC steps are performed. If one does so
all observables yield the same result for the Néel tempera-

tures for each TMO, respectively. To ensure a thorough ex-
ploration of phase space, simulations with up to 100 000 MC
steps for averaging have also been performed. In this case
the specific heat, not affected by reorientations of the mag-
netic sublattices, has reassuringly indicated the magnetic
phase transitions to occur at the same temperatures as in the
short simulations.

IV. RESULTS AND DISCUSSION

A. Exchange parameters

The present calculations of the exchange parameters of
TMOs use the ground-state electronic structure properties of
these materials as input. The latter are obtained self-
consistently with the LSIC method, explained in detail in
Ref. 21. In particular, as seen in Eq. �5�, for the MFT ap-
proach the relevant quantities are the scattering properties
evaluated at the equilibrium lattice constant of the ground
state, AFII, magnetic structure. For the approach based on
the energy differences only the total energies of the FM, AFI,
and AFII structures, evaluated at the theoretical equilibrium
lattice constants of the AFII configuration, are of relevance.

From Table I we can see that the LSIC method, treating
localized, and itinerant electrons on equal footing, repro-
duces well the equilibrium lattice constants and also the cor-
responding spin magnetic moments in the AFII structure.
The overall agreement with the experimental values is rea-
sonable for both quantities. Note, however, that the experi-
mental magnetic moments listed in the table include both the
spin and orbital contributions, which are substantial for FeO
and CoO, and non-negligible even for NiO. Regarding the
calculated spin magnetic moments, they are effectively equal
to the spin moments of the TM atoms, as the oxygen atoms
are not polarized in the AFII environment, and the induced
spin moments on the empty spheres are very small. In addi-

TABLE I. The calculated �calc.� equilibrium-lattice constants
and spin-magnetic moments, per TM atom, for all the studied
TMOs in AFII structure. The oxygen atoms are not spin polarized in
the AFII environment and the induced moments on the empty
spheres are very small. Consequently the calculated spin magnetic
moments of TMOs are practically equal to those of their TM atoms.
The experimental �exp.� values of the magnetic moments contain
not only the spin but also orbital contribution.

TMO

a0 �Å�  �B�
Calc. Exp. Calc. Exp.

MnO 4.49 4.44a 4.63 4.54b

FeO 4.39 4.33c 3.68 3.32d

CoO 4.31 4.26a 2.69 2.40e

NiO 4.24 4.17a 1.68 1.90f

aReference 42.
bReference 43.
cReference 44.
dReference 45.
eReference 46.
fReference 47.
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tion, as seen in Fig. 2, the spin magnetic moments show
considerable dependence on the lattice constants, indicating
that a similar behavior may also be expected for the calcu-
lated exchange constants. This dependence of the calculated
spin magnetic moments on the lattice constant was also ob-
served in previous studies6,15,48 and its trend agrees with the
Stoner model, stating that magnetic moments eventually col-
lapse at very high pressures.

Using the above ground state properties in the MFT ap-
proach, we have calculated the Jij exchange constants for the
first 11 neighbor shells. As expected only the first two of
them, J1 and J2, are of relevance as those corresponding to
the higher shells are less than 0.1 meV in magnitude. This
agrees well with the idea of super-exchange33 and can easily

be explained with it. Consequently, and for the purpose of
comparison with the results of the energy difference ap-
proach, in Table II we display only the J1 and J2 quantities,
as well as the experimental results. Our results also provide
justification for one of the assumptions underlying Eqs. �6�
and �7�, that the interactions between NN atoms are not de-
pendent on the sublattices of the atoms.

From our results in Table II one finds that the J2 param-
eters constitute the major part of magnetic exchange in
TMOs and that in magnitude they agree reasonably well be-
tween the two theoretical approaches, MFT and �E. The
results are about 70–80 % of the experimental values, except
for FeO, where the agreement for the MFT J2 is almost per-
fect and the �E value is larger than the experimental one.
This rather accidental agreement for FeO can most likely be
attributed to the fact that the experimental values are mea-
sured for Wüstite samples Fe1−xO with x�0.50 Also, the ex-
perimentally observed trend of the increasing absolute value
of J2 across the series is present in both approaches and is
most likely associated with the increasing number of the TM
3d electrons, responsible for the magnetic superexchange.
Regarding the quantitative agreement with experiment, the
MFT results agree better on average. One could envisage that
this agreement could be further improved, if the MFT ap-
proach was applied in the DLM state.29,56 Nevertheless, com-
pared to the other calculations displayed in Tables II and III,
our present results may already be considered as being at
least as good as those.

The situation is very different for the J1 exchange param-
eters. From Table II we see that, with the exception of NiO,
the absolute magnitudes of J1 are, within about 30%, similar
between the two theoretical approaches, but the signs are
opposite. Looking more closely at the parameters calculated
with the MFT we see that the results show the opposite trend
to that found for J2. Namely, the antiferromagnetic coupling
is getting weaker as one moves from MnO to CoO, and in

0.97

0.98

1.0

1.01

/
eq

4.0 4.1 4.2 4.3 4.4 4.5 4.6 4.7

a [Å]

MnO
FeO
CoO
NiO

FIG. 2. �Color online� The dependence of the calculated spin
magnetic moments on lattice constants. The spin-magnetic mo-
ments have been divided by their respective equlibirium values
given in Table I. The crossing points of each curve with the hori-
zontal dotted line at  /eq=1 mark the equilibrium lattice constant
of each TMO.

TABLE II. The exchange parameters, Ji, in meV, with i being the shell index, for the first two shells of all
the studied TMOs and both the MFT and �E, energy difference, methods. The experimental �exp.� values are
given in the leftmost column, respectively, according to the Hamiltonian30 in Eq. �4�. For i�2, the absolute
magnitudes of the Ji’s for all the TMOs have been less than 0.1 meV. For both the MFT and �E approaches
the calculated equilibrium lattice constants from Table I have been used. The results of Harrison,39 obtained
using a tight-binding �TB� formalism for the complete series of TMOs are listed here for a direct comparison.
The other previous results, obtained for selected monoxides, are listed in Table III.

TMO

J1 J2

Exp. MFT �E TBa Exp. MFT �E TBa

MnO −2.06, −2.64 b −0.91 0.68 −4.41 −2.79 b −1.99 −1.65 −1.09

FeO 1.04, 1.84c −0.65 0.48 −2.99 −3.24 c −3.17 −3.50 −1.56

CoO 0.70,d −1.07 e −0.32 0.53 −1.83 −6.30,d −5.31 e −4.84 −4.40 −1.64

NiO −0.69,f 0.69g 0.15 1.42 −1.44 −8.66,f −9.51 g −6.92 −6.95 −1.88

aReference 39.
bReference 49.
cReference 50.
dReference 51.
eReference 52.
fReference 53.
gReference 54.
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NiO it becomes ferromagnetic. This can be explained by
assuming both kinds of interaction to be present and to be
competing, in the direct and indirect exchange between NN
TM atoms. The picture is relatively intuitive for the direct
case. For Mn, which has half filled d shells, one expects
antiferromagnetic coupling since an electron hopping from
one Mn atom to the other one keeps its spin. Thus, this
transfer clearly prefers antiferromagnetic alignment of the
Mn atoms.57 Moving across the TMO series the occupation
of the minority spin channels is growing. This increases the
probability of an electron hopping, if the TM atoms are fer-
romagnetically aligned. Thus, the character of the exchange
should go toward ferromagnetic, which is what we find for
the J1 calculated via the MFT. Regarding the indirect ex-
change, we can also follow Goodenough.57 Nearest TM
neighbors interact antiferromagnetically when two electrons
in the same oxygen p or s orbitals are excited to the empty
TM eg orbitals. The strength of this kind of interaction can be
assumed not to change a lot along the TMO series, since the
occupation of both the oxygen p or s and the TM eg orbitals
does not change either. Ferromagnetic coupling on the other
hand is provided by electrons of alike spin that are in differ-
ent orbitals of the O atom. It is strengthened by a growing
occupation of t2g orbitals because this increases intra-atomic
exchange. Since the t2g occupancy is rising when moving
across the TMO series from MnO to NiO21 one would expect
that the magnitude of the ferromagnetic interaction increases
while the antiferromagnetic does not. This tendency is
clearly present in the MFT values for J1 in Table II.

Looking at the agreement with experiment not much over-
lap can be spotted. For the MnO the agreement is satisfactory
considering the simplicity of our Hamiltonian. For FeO the
sign is opposite. This could be caused by the above men-

tioned fact that in experiment Wüstite samples of the kind
Fe1−xO are investigated while our calculations are performed
for the ideal FeO system. For CoO and NiO comparison is
difficult since experimental values of opposite signs, but
similar absolute magnitude have been measured in different
experiments. To conclude the comparison of MFT J1 and
experimental J1 one can say that the agreement is not as
good as for the J2. Possible reasons have just been given, but
it also seems that the experimental determination of the J1 is
not as accurate as for the J2, as can be seen from the variety
of numbers obtained for the same compounds. The lack of
agreement between experimental and MFT values for the J1
may influence the calculations based on those. For the mag-
non spectra it could be expected that, besides quantitative
differences, due to the different signs even qualitative
changes of the curves might occur. We shall see later, how-
ever, that the latter is not the case. The effect on the calcu-
lated Néel temperatures should be small in any case since the
energy contributions of the NN in the AFII structure are can-
celed out.

For the J1 calculated with the energy difference approach
no obvious trends are seen in Table II, and in addition they
are positive for all TMOs. For NiO the latter agrees qualita-
tively with the MFT-J1 and also with previous theoretical
results, and the agreement with those by Ködderitzsch et
al.,20 J1=0.9 meV and J2=−5.5 meV, is also quantitatively
rather good. For the other TMOs the sign of J1 is opposite to
the ones calculated with the MFT, and for MnO and CoO
they also do not agree with previous theoretical investiga-
tions. The totally different behavior—compared to the MFT
values—can be explained by looking at the electronic ground
states of the calculated AFI and FM structures. In both of
them the oxygen atoms carry a magnetic moment, which

TABLE III. Summary of the first principles results for J1 and J2 in MnO and NiO, based on the
Hamiltonian30 in Eq. �4�, from the present and previous theoretical works for comparison. Only those close
to experimental values are listed. For details see the corresponding references. We found one result by Feng23

for CoO, obtained by using the B3LYP hybrid functionals method, J1=−47.12 meV and J2=−42.56 meV.
To our knowledge no further theoretical papers giving numerical values for the exchange parameters of FeO
exist.

MnO NiO

Method
J1

�meV�
J2

�meV� Method
J1

�meV�
J2

�meV�

Exp. −2.06, −2.64 −2.79 Exp. −0.69, 0.69 −8.66, −9.51

This Work −0.91 −1.99 This Work 0.15 −6.92

LDA+U a −2.50 −6.60 GGA+U b 0.87 −9.54

OEPa −2.85 −5.50 SIC-LMTOc 0.90 −5.50

PBE+U d −2.21 −1.16 Fock35e 0.95 −9.35

PBE0d −3.10 −3.69 B3LYPe 1.20 −13.35

HFd −0.73 −1.16 UHFe 0.40 −2.30

B3LYPf −2.64 −5.52

aReference 41.
bReference 15.
cReference 20.
dReference 22.
eReference 55.
fReference 23.
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they do not in the AFII structure. This magnetic moment can
be assumed to give rise to magnetic interaction with the
neighboring TM atoms �as a matter of fact, applying the
MFT to AFI or FM structures yields NN exchange param-
eters of several meV in magnitude between TM and oxygen
atoms�. This, however, is in strong contradiction to the as-
sumptions underlying Eqs. �6� and �7�, stating that magnetic
interaction only occurs between TM atoms. Thus, when us-
ing these equations anyway, this “artificially” created mag-
netic exchange is projected onto the J1 and J2. The reason for
the latter quantity being relatively close to its counterpart
calculated with the MFT is probably due to the large energy
differences between the AFII configuration and the AFI as
well as the FM configuration for each of the TMOs. This
obviously reduces the error made in Eq. �7�.

It should be mentioned that for all calculated pairs of J1
and J2, using SIC-LSDA, the resulting ground state magnetic
structure is that of AFII,58 despite the relatively large spread
of the J1 parameters. Note that the exchange parameters J1
and J2, obtained for the TMO series by applying the MFT
approach to the LSDA ground state electronic structure,
show no agreement with experiment, except for NiO, which
can perhaps be considered as a lucky coincidence. Further-
more, the J’s are longer-ranged, i.e., their character is more
metallic. This agrees with the fact that their uncorrected �no
SIC� ground states show only very small or no band gaps at
all.21

Finally, we would like to comment on the variation in the
exchange parameters as a function of lattice constants shown
in Fig. 3 for all the TMOs. As one can see, the absolute value
of J2 increases with decreasing a. This is in good agreement
with the interpretation of the exchange parameters in terms
of overlap integrals. The closer the atoms are, the larger the
overlap is between the TM d orbitals and the oxygen p or-
bitals. A similar behavior is found for the J1, which can be
understood in the same way as for J2. However, going
through the TMO series and starting with MnO, the change
of the J1 gets smaller as the antiferromagnetic character be-
comes less pronounced. According to Goodenough’s
arguments,57 this suggests that the ferromagnetic coupling
becomes more prominent than the antiferromagnetic one.

B. Néel temperatures

The calculated transition temperatures are summarized in
Table IV. One finds that MFA overestimates the experimental
Néel temperatures, whereas RPA underestimates them. This
is what can be expected from general considerations.33 One
can also see that the Néel temperatures calculated in the RPA
approach based only on J1 and J2 do not differ significantly
from those calculated using the 11 neighbor shells. This
again agrees with the idea of superexchange. What is not
expected is that, for MnO and FeO the RPA and MC results
are relatively small compared to experiment. In fact, for
these TMOs the MFA gives a better estimate. The probable
reason for that is the general relative underestimate for the
J2. The latter being the main contribution of magnetic ex-
change, their underestimate is largest for MnO and decreases
toward NiO. An exception is FeO. The agreement for J2 is

almost perfect, yet the RPA and MC estimates are roughly of
the same quality as those for the other TMOs. However, it
can again �see discussion of J1 and J2� be argued that due to
the experimental imperfect FeO lattice other effects not con-
sidered in our approach may play an important role for the
formation of magnetic order. The DLM results of Hughes et
al.29 are, with the exception of NiO, in good agreement with
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FIG. 3. �Color online� �a� The J1 and �b� J2 dependency on the
lattice constant a for all TMOs, calculated using MFT. The vertical
lines mark the calculated equilibrium lattice constants from Table I.

TABLE IV. Summary of the Néel temperatures calculated with
the Jij from the MFT approach �see Table II�. In the top two rows
the experimental and the DLM values are listed, followed by the
RPA values based on the interaction of the first 11 TM-TM shells
and of only the nearest and next-nearest neighbors �i.e., only J1 and
J2�. In rows 5 and 6 the MFA results shown, again using 11 or 2
shells, respectively. In the last row the results of the Monte Carlo
simulations are presented.

TN

�K� MnO FeO CoO NiO

Experiment 118 192 289 523

DLMa 126 172 242 336

RPA with J1–11 81 146 252 440

RPA with J1,2 87 155 260 448

MFA with J1–11 122 210 362 628

MFA with J1,2 129 221 373 644

MC 90 162 260 458

aReference 29.
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the experimental values. Their trend, however, is opposite to
ours, namely the ratio TN

DLM /TN
exp becomes smaller with in-

creasing atomic number. This could be due to not taking into
account the quantum character of the systems, which in the
present paper is done via the factor �S+1� /S,40 where S is
calculated according to Hund’s rules. Another possible rea-
son especially for the NiO result, as discussed in Ref. 29,
might be related to a possible importance of the short range
order correlations that a single-site approximation-like DLM
would not do justice to. Concentrating on our RPA and MC
results, we have to admit that better calculations for the in-
dividually selected TMO systems can be found in literature.
Among them are the calculations by Zhang et al.15 for NiO
�with a rather semiempirical approach� and Towler et al.59

for MnO. However, when studying the whole TMO series
with the same approach, such as the above DLM application,
the work reported by Harrison39 or Wan, Yin, and Savrasov,38

it is hard to find ab initio results, treating electron correla-
tions at the same level of sophistication and predicting the
Néel temperatures qualitatively and quantitatively as accu-
rately as in the present paper throughout the whole TMO
series.

To finish, we briefly discuss the Néel temperature depen-
dence on pressure shown in Fig. 4 for all the studied TMOs.
To calculate the pressure, p, the Murnaghan equation of
state60 has been used. Based on the behavior of J2 seen in
Fig. 3, it is not surprising that for the whole TMO series the
calculated Néel temperatures increase with pressure. Quali-
tatively, this agrees with previous experimental and theoret-
ical results, indicating a stability of the antiferromagnetic
structure up to high pressures �several tens of GPa, at least�
before it collapses and a paramagnetic or low-spin configu-
ration takes over.4,6,15,61–67 We can compare the pressure de-
pendency of TN to experiment �for MnO—Ref. 4, FeO—Ref.
65, CoO—Ref. 62, NiO—Ref. 64� for p�0 by assuming
them to be linear. Taking the pressure derivative of the nor-
malized Néel temperatures, ��TN /TN�p=0�� /�p, we find that
our calculated values increase too slowly, roughly by a factor
of 1/2.

C. Magnon spectra

Considering the above results for the Jij parameters it is
reasonable to assume that only the nearest and next-nearest-
neighbor interactions contribute significantly to the magnon
dispersion relation, which therefore should be adequately
represented by Eq. �13�. For the calculation the MFT-J1 and
J2 from Table II and the theoretical �calc.� magnetic moment
 from Table I was used. The resulting magnon spectra for

0

5

10

15

20

E
[m

eV
]

0

5

10

15

20

MnO

0

5

10

15

20

E
[m

eV
]

0

5

10

15

20

FeO

0

10

20

30

40

E
[m

eV
]

0

10

20

30

40

CoO

0

20

40

60

80

100

120

E
[m

eV
]

.25 0 .25 .5|1. 0.5
0

20

40

60

80

100

120

0 .5 1

NiO

q [2 / a]

X M|M’ M’’

[qqq] [qqq] [00q] [qq0]

M
X

M’

M’’

FIG. 5. Shown are the calculated TMO spin wave dispersions
together with experimental data points for MnO �black diamonds,10

open circles49�, FeO,50 CoO,51 and NiO,54 respectively. The coordi-
nates are cartesian and in units of 2� /a. The path chosen along
several high-symmetry lines starts at X= �0.25,0.25,0.25� and goes
along �qqq� to �= �0,0 ,0�, then along �qqq� to M= �−0.5,
−0.5,0.5�, and further along �00q� to � of the neighboring AFII
Brillouin zone, then continuing along �qq0� to M. The inlays in the
MnO panel show the different branches along the AFII Brillouin
zone.

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

2.2
T

N
,R

PA
/T

0 N
,R

PA

-30 -20 -10 0 10 20 30 40

p [GPa]

MnO
FeO
CoO
NiO

FIG. 4. �Color online� The normalized RPA-based Néel tem-
peratures TN,RPA /TN,RPA

0 for all TMOs as a function of pressure p.
TN,RPA

0 is taken from row 3 of Table IV.

EXCHANGE COUPLING IN TRANSITION METAL… PHYSICAL REVIEW B 80, 014408 �2009�

014408-9



all the studied TMOs, in the AFII structure, are shown in Fig.
5 together with the experimental results. Generally, the
agreement between the calculated dispersion curves and the
experimental observations is rather good, considering the
Heisenberg Hamiltonian used in this work—anisotropy and
alignment energy terms are neglected. This is also the reason
why the calculated curves fail to reproduce the nonzero en-
ergies at M= �−0.5,−0.5,0.5�. Besides that, minima,
maxima, and curvature are well reproduced. Furthermore it
can be seen that except for FeO the theoretical curves gen-
erally underestimate the experimental energies, which is due
to the underestimate of the J2 parameters. The relative mag-
nitude of the peak along �qqq� varies strongly, as one goes
through the TMO series. This effect can be ascribed to the
changing ratio of J2 /J1.

The qualitative agreement with previous theoretical
works, e. g. such as that of Solovyev and Terakura41 is good,
although not in the absolute numerical terms, arising from
different values of the Heisenberg exchange parameters Jij.

V. CONCLUSION

We have used the local self-interaction correction, imple-
mented in the multiple scattering theory in the framework of
KKR in combination with the magnetic force theorem to
study magnetic interactions in transition metal monoxides.

Specifically, we have calculated the J1 and J2 exchange pa-
rameters, the corresponding Néel temperatures and the re-
spective magnon spectra for the whole TMO series. The
most important conclusion of this work is that the combined
approach used here provides an adequate description of mag-
netic interactions for the series as a whole. Without consid-
ering correlation effects the theoretical results in general do
not agree with experimental findings. Furthermore, we have
shown that our ab initio approach yields upper �MFA� and
lower limits �RPA, MC simulations� for the Néel tempera-
tures for the whole TMO series, and the calculated magnon
spectra are in good qualitative agreement with experiment
and other theoretical calculations.
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