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ABSTRACT

The current-perpendicular-to-plane (CPP) magnetoconductance of a sample sand-
wiched by two ideal non-magnetic leads is described at an ab initio level, The so-
called ‘active’ part of the system is a trilayer consisting of two magnetic slabs of
finite thickness separated by a non-magnetic spacer. We use a transmission matrix
formulation of the conductance based on surface Green functions as formulated by
means of the tight-binding linear muffin-tin orbital method. An equivalent and com-
putationally more efficient formulation of the problem based on reflection matrices is
also presented. The formalism is extended to the case of lateral supercells with ran-
dom arrangements of atoms which in turn allows to deal with ballistic and diffusive
transport on equal footing. Applications refer to fec-based Co/ Cu/Co(001) trilayers.
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INTRODUCTION

Transport in layered materials is subject of intensive theoretical inves-
tigations, in particular in view of the discovery of the giant magnetocon-
ductance (GMC) in metallic multilayers [1, 2]. Various theoretical treat-
ments have been proposed, based on the semiclassical Boltzmann equa-
tion or, alternatively, on a Kubo-Greenwood type formulation within 2
free-electron model with random point scatterers, for the Kronig-Penney
model, or within a single-band tight-binding model. A description of ex-
perimental and theoretical results can be found in a recent review article
[3]. Up to now the GMC effect has been observed mostly in the diffusive
transport regime in which the mean free path is much smaller than the
dimension of the so-called ‘active’ part of the multilayer system, i.e.,
the whole system with exception of the leads. Most of measurements
up to date were performed in the current-in-plane (CIP) geometry [1],
the current-perpendicular-to-plane (CPP) geometry [2] seems to be ex-
perimentally more demanding. From a theoretical standpoint of view
CPP transport is interesting because of an obvious role played by in-
terfaces, its close relation to tunneling across an insulator or vacuum,
and because of its relation to a semi-classical view of ballistic trans-
port [4]. The present theoretical understanding of the CPP transport
has been reviewed in a recent paper [5], including the transport in the
ballistic regime. In this regime, in contrast to the diffusive regime, the
mean free path is larger than the dimension of the ‘active’ part of the
multilayer system. The spin-dependent scattering at ideal interfaces be-
tween magnetic and non-magnetic metals which form a multilayer, the
so-called intrinsic potential scattering, is usually said to be the origin of
the GMC in the ballistic regime [4]. In the diffusive regime the GMC
is thought to originate from spin-dependent scattering off impurities in
the bulk and/or at interfaces between the magnetic slabs and the spacer
(extrinsic defects). It should be noted that in real multilayers also dis-
locations or stacking faults occur, and magnons and phonons can cause
dynamical perturbations. While in the limiting cases of the strong dif-
fusive regime and the ballistic regime simplifications can be made, a
real multilayer system usually represents a mixture of both intrinsic and
extrinsic defects.

Ab initio calculations of the GMC are still rather rare. We mention a
Boltzmann-type approach developed for multilayer systems within the
relaxation-time approximation, which is limited to either weak scattering
or very low-concentration [6] limits. Typically, the electronic structure of
a three-dimensional periodic (infinite) multilayer system is determined
(velocities and the Fermi surface) and, in separate calculations, the spin-
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dependent relaxation time of bulk impurities is found and used to solve
the (classical) Boltzmann equation. Clearly, the change of the super-
|attice bandstructure due to impurities is neglected, hence the above
mentioned limitation of the method. A solution of the Boltzmann equa-
tion for layered systems without the relaxation-time approximation has
also been suggested [7]. Recently ab initio calculations using a Kubo-
Greenwood approach generalized to layered systems [8, 9] have appeared
in which (substitutional) disorder is included within an inhomogeneous
coherent potential approximation (CPA). This is an appropriate ap-
proach to deal with the influence of imperfections and to treat intrinsic
and extrinsic scattering on equal footing. However, up to now in there
the so-called vertex corrections with respect to the configurational aver-
age of the products of two single particle Green functions are neglected.
The above mentioned approaches can in principle be used for both the
CIP and CPP geometry.

An alternative theoretical approach based on non-equilibrium Green
functions or on a transmission matrix formalism (Landauer-type ap-
proach) can be used for the CPP transport. A useful review of these
techniques can be found in a recent monograph [10].

It is the aim of this paper to formulate a surface Green function (SGF)
approach to CPP transport in magnetic multilayers within the tight-
binding linear muffin-tin orbital (TB-LMTO) method [11]. Related for-
mulations based on empirical tight-binding (TB) models have appeared
recently [13, 14, 15, 16]. The present formulation is then extended to
the case of lateral two-dimensional supercells with random occupation of
lattice sites by two kinds of atoms, whereby the stacking of such random
layers in the growth direction can be arbitrary. The usefulness of such
an approach has recently been illustrated for the case of a single-band
TB model [17]. In particular it has been shown that current fluctuations
due to different configurations are small for metallic multilayers if the
size of the supercells is large enough. It should be mentioned, however,
that in the case of tunneling through an amorphous spacer such fluctu-
ations can be quite large [18]. We shall present an ab initio application
of such an approach for the case of Co/Cu/Co(001)-based trilayers.

THEORY

Suppose the magnetic multilayer system consists of a semi-infinite left
(£) and a semi-infinite right (R) non-magnetic lead sandwiching a tri-
layer consisting of a left and a right magnetic slab of varying thickness
separated by a non-magnetic spacer again of varying thickness. The se-
quence of planes of atoms (layers) in the growth direction of the trilayer
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is assumed to be arbitrary. In principle, atomic layers can be viewed in
terms of n X n supercells (n x n two-dimensional complex lattice). In
order to describe disorder (substitutional binary alloys) it is then neces-
sary to average over different sizes n of supercells, and for each n over
different occupations of the sites within the supercell by the two con-
stituents involved. Quite clearly such an approach applies to disordered
spacers and/or magnetic slabs as well as to disordered interfaces. In
the following we neglect possible layer and lattice relaxations in the sys-
‘tem; all formulations and calculations are based on a fcc Co(001) parent
lattice,

FLECTRONIC STRUCTURE

The electronic structure of the system is described in terms of the
following TB-LMTO Hamiltonian,

Hgl g = CRi 6RR OL,L! (1)

T R LN (R 0 I S e

where R is the site index, & is the spin index, and the potential parame-
ters C&, ARy, and v§;, are diagonal matrices with respect to the angu-
lar momentum L = (¢m). The non-random screened structure constants

matrix SRL r nd the site-diagonal screening matrix fr,orr = AL oL,
are spin-independent. Assuming one and the same two- dimensional
translational symmetry in each atomic layer p, kj-projections can be
defined, where kj is a vector from the corresponding surface Brillouin
zone (SBZ) In a principal layer formalism [11], the screened structure
constants S2_ are of block tridiagonal form. Neglecting layer relaxations

g
they are given by

SE (k) = S8k, SE (k) = S8 (ky) Gp1,g + ST o(ky) Gp-r,g- (2)

The properties of individual atoms occupying lattice sites are charac-
terized by potential function matrices,

z—CR
Rt (R-0)(z-Cg)’

which are diagonal with respect to I and are obtained by solving the
corresponding Kohn-Sham equations. The potential functions assume
the same value Pf'”(z) for each site within a given atomic layer p for

PR (2) = (3)
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1x1-supercells, and, in principle, n? different values Pf ?(z) for n X n-
supercells. Finally, we define the infinite (screened) Green function ma-
trix g?9 (z) in the TB-LMTO method as

(97 (e, )

Assuming that the ‘active’ part of the multilayer system consists of N
layers and that the physical properties of all lead layers are identical,
we can characterize these layers by so-called embedding potentials Fﬁ!“
[11], which for p=1 and p= N are given by

1
= PJ(2) 8pq ~ Spyky) - (4)

P\

9 Ky, 2) = Spo(ky) 627 (k) 2) Sh1 ()
PR7 (kyp, 2) = Sh1(ky) G5 (ky, 2) SEolky) | (5)

and which are zero otherwise. The quantities gf@", X =L, R, are the
corresponding SGFs of the ideal left and right leads.

The layer-diagonal blocks of the inverse of the Green function matrix
can then be written as

(gﬁ (X, Z))

1 g g
= P{(z) - S5 (ky) = 7"y 2) forp=1,

np

-1 o ;
(9770, 2)) = PP(z) = Sgp (k) for1<p< N, (©)
-1 o
(9(0.0)(1{”, z))pp = Pﬁ(;) — Sg'g(k”) — I“JB\; (ky 2) forp=N,

while its off-diagonal blocks are given by

-1
(97 (ky, Z))p .= — 58, (k) 6p41,6 — STolky) p-1.q- (7)
It should be noted that Eqs. (4-7) only apply in the case of an infinite
parent lattice (no layer relaxations). In this way the originally infinite
matrix can easily be reduced to a finite matrix with the embedding
potentials acting as boundary conditions. The block-tridiagonal form
in Eq. (7) of the inverse of the Green function allows to use efficient

methods [11, 12] to determine any non-vanishing block of gg";' (ks 2). In

particular, this applies to the blocks gf,’]‘\’,(z), gffﬁ(z), and/or gﬁ:j\f(z)

which are needed for the evaluation of the GMC described in the next
subsection. We refer the reader to a recent book [11] for further details
concerning the TB-LMTO method for layered systems.

In the case of two-dimensional n x n (lateral) supercells the above
expressions remain formally the same, however, each quantity is now
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replaced by a supermatrix labelled by the positions of the sites within
a given supercell. In the case of binary substitutional alloys the cor-
responding potential functions are assumed to have only two different
values for the two constituents involved, i.e., we neglect possible local
environment effects and short-range order within a given supercell. It
should be noted that, in principle, for each chosen supercell all inequiv-
alent potential functions have to be determined selfconsistently.

MAGNETOCONDUCTANCE

Our derivation of the conductance Cps follows that given in [13]. Its
details will be published elsewhere. In the following a subscript M=F
(AF) denotes the ferromagnetic (antiferromagnetic) configuration of the
magnetizations in the magnetic slabs, respectively.

The resulting expression for the conductance per interface atom is
given by

a o 62 1 o
Cor =Y _Cir CM:"?FHE T3 (X, Er) (8)

where V|| is the number of k;-points in the SBZ and E'r is the Fermi en-
ergy. Suppressing the subscript M the transmission coefficient 17 (k), E)
can be expressed as

T (ky, E) = | }ilglotr (B2 (ky, B) g7 %Ky, 24)

x BY (ky, B) gnra (kg 2-)3 (9)

where tr denotes the trace over angulat momenta,
BY (ky, E) = i (D9 (kg 24) = T (e, 2-))
B, (e, E) = i (TR (ky, 24) = TR (o 2-)) (10)

and zy = E +4§. In this formulation we have assumed a collinear
spin structure and that the spin ¢ is a good quantum number. This
assumption is valid only for collinear spin structures if the spin-orbit
interaction is neglected. The magnetoconductance ratio is then defined
as

GMC = (Cl +Ch)/(Cle +Cip) — 1. (11)

The reflection and transmission coefficients are related by

R (k), E) =1-T(k, E), (12)
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and can be expressed as (I is the unit matrix)
R (), ) = lim tr {| B (ky, E) gfiley, 24) + 1]

x| B (ky B) gy, 2-) —i1]}, (13)

such that the magnetoconductance can be evaluated using the layer-
diagonal blocks of the Green function matrix ¢#(z) rather than the
layt]er off-diagonal blocks as in the case of the transmission coefficient
[13].

There exists, however, a direct way of expressing the transmission
coefficient T (k;, ) in terms of the layer-diagonal blocks of the system
Green function g7 (2), namely,

77 (ky, E) = lim i {B% (X, E) gk, 24)

x B (ky, B) gy 2-)3 (14)
where B%; is defined in Eq. (10), and Bj{, is given by
By (k. B) = ¢ (D47 (kyo 24) — 87 (K 2-)) s (15)

where f‘ﬁ,’” is the embedding potential of the semi-infinite ‘fragment’ to
the left of the last layer in the trilayer system.

The generalization of the formalism to the supercell case proceeds
similarly to the previous section: the corresponding matrices are substi-
tuted by supermatrices labelled by individual atoms within a supercell
and the kj-integration is confined to the (n2-times smaller) SBZ corre-
sponding to the supercell. However, the computational effort within the
present SGF technique can significantly be reduced by using the fact
that the SGFs are independent of the choice of a supercell, since the
atomic position vectors within a given supercell are nothing but lattice
vectors of the two-dimensional lattice that corresponds to the parent
lattice (1x1-supercell) of the leads. One can express the supercell (sc)
SGF therefore in terms of the SGF of the original lattice as follows

G2 per(ayp 2) = 2 e WRETRRIGR,  ,(2),

Ry
SBZ
1 i R et
g?ch{,’RK, (Z) = 7\7_|—| Z &' kil (RE—Rx )g(k“’z)’ (16)
k),

where k|| and q) denote vectors in the SBZ of the original lattice and
in the supercell SBZ, respectively, and the Rz refer to atomic positions.
within the supercell.
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The computational scheme described above can be used also for su-
percell studies based on a single-band TB model. Assuming a nearest-
neighbor hopping parameter ¢ and identical left and right leads, we ob-
tain [17]

T (ky, E) = 12 | A7 (ky;, B) of w(kys 24)1* (17)

where

A° (), E) = —%ImG"(k”,E+ i8) (18)

are the Bloch spectral functions of the corresponding SGF G°(ky, z) for
the leads.

RESULTS AND DISCUSSION

We have performed calculations for the following formal multilayer
system:

Cu(001) M Ss M Cu(001)
semi-infinite || magnetic | spacer | magnetic || semi-infinite  (19)
lead slab slab lead

where N = 2m+s. For Co,,/Cu,/Coy, trilayers we have studied: (i) the
dependence of the GMC on the thickness of magnetic slabs m and (ii) the
oscillatory behavior of the GMC as a function of the spacer thickness s.
Furthermore, we have studied (iii) the oscillatory behavior of the GMC
as a function of the spacer thickness for a (CuPd) superstructure spacer,
namely, Cop,/(CuPd),/Coy, trilayers, where r is the number of repeti-
tions. If s is an even number then the superstructure is terminated by a
Pd layer, if s is odd the terminating layer is formed by Cu atoms. The
combined effect of intrinsic and extrinsic defects will be demonstrated
for Co/Cu/Co-based trilayers on the following cases: (i) interdiffused
interfaces; (ii) a random spacer sandwiched by ideal magnetic slabs; (iii)
an ideal Cu spacer sandwiched by disordered magnetic slabs; and (iv) a
case with combined disorders of types (ii) and (iii).

NUMERICAL IMPLEMENTATION

Random substitutional alloys Aj_,B; are simulated by random super-
cells with the same average composition. Random configurations were
generated using the RM48 random number generator [19] and the bi-
nary correlation function was evaluated to test the ‘randomness’ of each
configuration. For the single-band TB model we have tested n X n ran-
dom supercells (n=>5, 7, 10) corresponding roughly to a AgsBys random
substitutional alloy, namely, 21 A atoms and 4 B atoms for the 5X5-
supercell and 41 A atoms and 8 B atoms for the 7x7-supercell randomly
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distributed over the sites within the supercell. In the case of the TB-
LMTO model we have tested only 5X5- and 7x7-supercells. In all cases
(typically an average over 5 configurations for a 5x5-supercell and an
average over 3 configurations for a 7x7-supercell were calculated) the
results for the partial currents agreed within 1-3%, the agreement being"
better for larger supercells. The same random supercells were used for
both the single-band model and the TB-LMTO studies.

In principle, one should use selfconsistent potential parameters cor-
responding to a given random supercell, however, such an approach is
"numerically prohibitive for 5x5- or 7x7-supercells. For the case of a
2 x2-supercell and A7sBgs alloys we found that the fluctuations of the
calculated potential parameters for A and B atoms for different random
configurations from those obtained selfconsistently using the CPA are
quite small (of the order of a few per cent). We have thus used the
selfconsistent CPA potential parameters determined for a given alloy
composition [11] also in the present supercell calculations. It should be
noted that the same parameters were employed for various random con-
figurations as well as for different supercell sizes. We have thus neglected
all possible fluctuations of the potential parameters due to a variation of
the local environment and assumed that the potential parameters take
only two values the same for any A and B atom within a supercell. The
potential parameters used are those of the corresponding A /B interface
(ideal or random) where A(B) corresponds to atoms forming magnetic
(spacer) layers. We have also neglected the layer dependence of the
potential parameters and chosen their bulk-like values.

The k-integration covers 10000 points in the full fcc(001)-SBZ (400
(196) points in the corresponding 5x5- (7x7)-supercell SBZ). In some
cases, in particular in the ballistic regime a much higher number of k|-
points was used to obtain well converged results. In all cases we have
employed |Imzs| = 10”7 Ry. It should be noted that for a 1x1-supercell
one can integrate over the irreducible part of the SBZ while for the
random supercell the kj-integration is confined to the full supercell SBZ
(or, more precisely, over a half of the supercell SBZ due to time-reversal
symmetry).

BALLISTIC TRANSPORT

We shall start our discussion by a remark concerning some general
features of the electronic structure of Cu bands and of Co spin-up (1)
and Co spin-down (/) bands at the Fermi energy of Cu leads. It should
be noted that by ‘bands’ we mean the bands of the three-dimensional
periodic bulk systems fcc Cu and fec Co (at the Fermi energy of Cu).
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The Cu- and Cot-bands are very similar representing only a very weak
intrinsic scattering potential at the Cu/Co interface. Consequently, the
transmission of t-electrons for a ferromagnetic alignment of the magne-
tizations (and hence also their conductance as given by Eq. (8)) through
the Co/Cu interfaces is large. On the contrary, the large difference be-
tween the Cu- and Col-bands acts as an effective potential barrier at
the interface for |-electrons and, hence, gives rise to much smaller F]-
and AF-conductances. It should be also noted that in this paper we will
study only symmetrical trilayers, i.e., the case of identical left and right
magnetic slabs for which spin-up and spin-down conductances for the
AF alignments coincide.

The dependence of the GMC of ideal Co,,/Cus/Coy, trilayers on the
thickness of the magnetic slabs m is presented in Fig. 1. The most re-
markable feature is a strong suppression of the GMC (Fig. 1a) for small
thicknesses of the magnetic slabs and a saturation of about 100% at large
thicknesses. This result can be understood by plotting partial conduc-
tances, namely the F1- and F|-conductances for the ferromagnetic align-
ment of the magnetizations in the left and the right magnetic slabs and
that for the antiferromagnetic alignment (AF-conductances). The sup-
pression of the GMC is quite likely due to an effective potential barrier in
the d|-channel because of the above mentioned large difference between
the Cu- and Col-bands. Hence, a narrower magnetic slab allows for a
larger transmission of electrons, in particular for the F.-conductance and
both AF-conductances. As a result, the total AF-conductance increases
faster than the total F-conductance and hence the GMC ratio drops (see
also [16]). The oscillatory behavior of the conductances can be related
to the oscillatory behavior of the Fl-conductances of a single Co slab of
varying thickness embedded into the Cu host (Fig. 1b, empty symbols).
Quite clearly such oscillations can be ascribed to multiple scattering ef-
fects of |-electrons at the interfaces. The GMC of finite Co slabs never
reaches the limit of semi-infinite Co slabs because of different ballistic
conductances of Cu leads for the case of finite Co slabs and those of Co
leads in the case of semi-infinite Co leads.

The effect of quantum current oscillations was first studied by Mathon
[14] using an empirical multiband TB-model within a Kubo-Landauer
type approach by considering the dependence of the GMC on the thick-
ness of the spacer. In Fig. 2 we present such calculations for Cos/Cus/
Cos trilayers with varying thickness of the spacer s, We clearly ob-
serve pronounced GMC oscillations (Fig. 2a) around a value of about
115% which are damped with increasing spacer thickness. It should be
noted that in order to obtain converged results for the present case it is
necessary to use a much finer sampling of the irreducible SBZ than men-
tioned above, namely 30000 k-points in the irreducible SBZ. A clearer
picture is obtained by looking at the partial conductances, Fig. 2b. The
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Figure 1 Ideal Comm/Cus/Coy, trilayers sandwiched by semi-infinite Cu leads as a
function of the thickness of the magnetic slabs m: (a) magnetoconductance ratio
(diamonds) and the limit of semi-infinite Co slabs (heavy dot); (b) conductances
per atom for the ferromagnetic t-spin (up-triangles), ferromagnetic l-spin (down-
triangles), and antiferromagnetic configuration (diamonds). Empty symbols (up- and
down-triangles) refer to the ferromagnetic - and }-spin conductances of a single Co
slab of varying thickness embedded into a Cu host. For semi-infinite Co slabs the
ferromagnetic - (+), {- (x), and antiferromagnetic (heavy dot) conductances are
shown, respectively.

oscillatory behavior originates mostly from the F|-conductances whose
amplitudes are much larger than those of the AF-conductances while
the Ft-conductances are essentially thickness independent. We observe
oscillations with a period of about 5-6 MLs in both the F|- and AF-
conductances while some admixture of short-period oscillations with a
period of about 2.5 MLs is seen in the Fl-conductances. We note that
these values correlate reasonably well with similar values obtained for the
interlayer exchange coupling using the same electronic structure model
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Figure 2 Ideal Cos/Cu,/Cos trilayers sandwiched by semi-infinite Cu leads as a
function of the spacer thickness s: (a) magnetoconductance ratio (diamonds); (b)
conductances per atom for the ferromagnetic |-spin (down-triangles) and antiferro-
magnetic configuration (diamonds). Note the reduced scale of y-axis.

(see, e.g., [21]). The amplitudes are roughly damped as s™!, where s is
the spacet thickness [14].

The oscillations of the GMC with respect to the spacer thickness s may
also have an extrinsic origin rather than the intrinsic origin described
above. In Fig. 3 we plot the dependence of the GMC as a function of
the thickness of (CuPd) bilayers again sandwiched by Co slabs each 5
MLs thick. We have thus a superstructure in the spacer. The char-
acteristic zig-zag shape of the GMC (Fig. 3a) is due to alternating Cu
and Pd layers. By using this superstructure spacer we have combined
magnetic (Co/Cu, for even numbers of spacer layers also Co/Pd) and
non-magnetic (Cu/Pd) scattering at interfaces. The higher (smaller)
values of the GMC correspond to the case of odd (even) numbers of
spacer layers. The oscillations are clearly related to oscillations in the
Ft- and Fl-conductances (Fig. 3b) which oscillate in phase giving rise
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per atom for the ferromagnetic f-spin (up-triangles), ferromagnetic l-spin (down-
triangles), and antiferromagnetic configuration (diamonds). Full symbols refer to a
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to an enhancement of oscillation amplitudes. It should be noted that
as compared to the ideal trilayer the F{- and F|-conductances are re-
duced by the same amount. This fact indicates that the oscillations are
now due to (dominating) non-magnetic scattering at the Cu/Pd inter-
faces rather than due to magnetic scattering at the Cu/Co interfaces as
before (see Fig. 2b). The drop of the F- and AF-conductances can be
understood in analogy to the interpretation given for Fig. 1b: the reason
is a formation of an additional potential barrier in the d-channel due to
a mismatch of Cu- and Pd-bands at the Fermi energy.

3565



120 £ T T T ¥ T ]
=
p=!
&
3 90 .
g {1} Aeeea -
S Amme yF S A —— A
g B e e ety
Eﬂ 4 P g G T e Autbabt e T - (a)
e 30 L I 1 1 1 u
0 2 4 6 8 16
Spacer layer thickness {(MLs)
1.0 T ¥ T T T
0% - by
= o8 -
= A A Ak A A A
£ 07f -
3
£ 06 -
g
= 05 T .
8 04 .
=1 O-nene G neen O-ee- nene S SERRES ©---e- Gnn- <
3 03 .
= TS S tiaie bty i (atuluh ATay phpirtel - yivbybpt
= LT T g T T ..w_.z.m-e. Wy STEIE
S o2f ° - .
0.l -
0.0 1 L 1 1 1
0 2 4 6 B 10

Spacer layer thickness (MLs)

Figure 4 ‘Trilayers with 15%-interdiffused interfaces and ideal Cos /Cus/Cos trilayers
sandwiched by semi-infinite Cu leads as a function of the spacer thickness s: (a) mag-
netoconductance ratio {diamonds, ideal trilayer; up-triangles-(1), one of the inner in-
terfaces is interdiffused; empty up-triangles-(2), both inner interfaces are interdiffused;
down-triangles-(3), two inner and one of outer interfaces are interdiffused; empty
down-triangles-(4), all four interfaces are interdiffused); (b) conductances per atom
for the ferromagnetic T-spin (up-triangles), ferromagnetic |-spin (down-triangles), and
antiferromagnetic configuration (diamonds). Full symbols refer to an ideal trilayer,
empty symbals to a trilayer with all interfaces interdiffused.

COMBINED BALLISTIC AND DIFFUSIVE TRANSPORT

In general, in addition to scattering at intrinsic defects (system in-
terfaces) there is scattering at extrinsic defects, namely at impurities,
stacking faults, dislocations, and there are even dynamical effects like
scattering of electrons with phonons or magnons. Here we assume substi-
tutional impurities in the spacer, magnetic slabs, and at their interfaces
in a reference system which consists of the left and right semi-infinite
Cu leads sandwiching two Co slabs, each 5 MLs thick, and separated by
a Cu spacer of varying thickness (1-10 MLs).
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Figure 5 Cos/(CugsNiis):/Cos trilayers with alloyed spacer and ideal Cos/ Cu./Cos
trilayers sandwiched by semi-infinite Cu leads as a function of the spacer thickness s:
(a) magnetoconductance ratio (diamonds, ideal trilayer; triangles, alloyed spacer); (b)
conductances per atom for the ferromagnetic T-spin (up-triangles), ferromagnetic |-
spin (down-triangles), and antiferromagnetic configuration (diamonds). Full symbols
refer to an ideal trilayer, empty symbols to a trilayer with alloyed spacer.

The effect of disorder at the Co/Cu interfaces is shown in Fig. 4. The
interdiffused interface consists of two disordered interface layers with
compositions CogsCuys (the Co side) and Co15Cugs (the Cu side). The
GMC decreases monotonically with the number of disordered interfaces,
and disorder suppresses the oscillations present for an ideal interface.
Disorder influences the Ff-conductances very weakly because of the sim-
ilarity of the Cu- and the Cof-bands. The AF-conductances, however,
are much larger as compared to an ideal trilayer and their increase re-
sults in a decrease of the GMC, This behavior seems to contradict a
common (but incorrect) belief that disorder always reduces the conduc-
tance. In fact, the effect of disorder is fourfold: (i) it increases the overall
amount of scattering which contributes to the reduction of the transmis-
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Figure 6 (CossNiis)s/Cu,/(CossNiis)s trilayers with alloyed magnetic slabs and
ideal Cos/Cus/Cos trilayers sandwiched by semi-infinite Cu leads as a function of
the spacer thickness s: (a) magnetoconductance ratio (diamonds, ideal trilayer; tri-
angles, alloyed magnetic slabs); (b) conductances per atom for the ferromagnetic
t-spin (up-triangles), ferromagnetic |-spin (down-triangles), and antiferromagnetic
configuration (diamonds). Full symbols refer to an ideal trilayer, empty symbols to a
trilayer with alloyed magnetic layers.

sion probability and, hence, the conductance; (ii) the relaxation of a
strict conservation of kj in disordered systems opens up new transmis-
sion channels which contribute to an increase of the conductance; (iii)
interdiffusion smoothes the abrupt potential barrier of the ideal trilayer
which in turn also leads to an increased transmission coeflicient; and (iv)
the alloying in magnetic layers can increase (decrease) the effective bar-
rier for - and/or J-electrons at the Co/Cu interface and thus decrease
(increase) the conductance in this channel. Therefore, the net influ-
ence of disorder on the conductance results from a competition between
these effects and may lead to an increase or decrease of the conductance,
depending on the system under consideration (see also [20]).
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Figure 7 (COgsNi15)5/(OUs5Ni15)5/ (COssNi15)5 trilayers with combined alloying in
both the spacer and magnetic slabs and ideal Cos/Cu, /Cos trilayers sandwiched by
semi-infinite Cu leads as a function of the spacer thickness s: (a) magnetoconductance
ratio (diamonds, ideal layer; triangles, alloyed magnetic slabs and spacer); (b) con-
ductances per atom for the ferromagnetic f-spin (up-triangles), ferromagnetic |-spin
(down-triangles), and antiferromagnetic configuration (diamonds). Full symbols refer
to an ideal trilayer, empty symbols to an alloyed trilayer.

The effect of alloying in the non-magnetic spacer (CugsNiys) on the
magnetoconductance is presented in Fig. 5. We observe a monotonic
decrease of the GMC ratio as a function of the spacer thickness (Fig. 5a).
The origin of this decrease can be traced from Fig. 5b. Disorder in CuNi
alloys strongly depends on the concentration but for the Cu-rich alloys
the states at the Fermi energy are influenced only weakly by disorder
[22]. Therefore, the F|- and AF-conductances are only slightly smaller
than those of an ideal trilayer. Consequently, the effect of extrinsic
potential scattering for the Fl- and AF-conductances is rather small
as compared to the strong intrinsic scattering at the interfaces. On the
other hand, the effect of extrinsic defects dominates the Ft-conductances
where intrinsic scattering is negligibly small. In fact it is the Ft-channel
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which is mostly responsible for the decrease of the GMC ratio with
increasing spacer thickness.

The effect of alloying in the magnetic slabs (CogsNiys) on the magne-
toconductance is presented in Fig. 6. Contrary to the case of disorder
in the spacer the GMC ratio quickly saturates to approximately half of
the value for an ideal trilayer. The behavior of the partial conductances
is similar to that for an interdiffused interface. The Ff-conductances
are nearly the same as for the ideal trilayer due to the similarity of the
Cot- and the Nif-bands at the Fermi energy. Since the Col-bands are
higher in energy as compared to the Ni]-bands, alloying of Co with Ni
decreases effectively the potential barrier height resulting thus into a
larger transmission coefficient (conductance) as compared to the ideal
trilayer. Consequently, the AF-conductances of the alloyed magnetic lay-
ers are larger than those of an ideal trilayer. The effect is the same for
the Fl-conductances but much weaker, indicating dominating intrinsic
scattering at interfaces for this channel.

The results of the study of combined disorder in both the spacer
(CugsNiys) and the magnetic layers (CogsNiys) are presented in Fig. 7.
They are qualitatively similar to those for a random spacer but the GMC
already starts at a value of about 60%, the value of disordered magnetic
layers separated by an ideal Cu spacer (see Fig. 6). The decrease of
the GMC is due to a corresponding decrease of the F{-conductances
resulting from alloying in the spacer.

Fig. 8 illustrates (for the case of partial conductances) the robustness
of supercell calculations with respect to the supercell size and the config-
urational average (5x5-supercell averaged over five configurations versus
7% 7-supercell averaged over three configurations). lllustrated here is the
case of alloying in the spacer (in other cases the agreement is equally
good). The good agreement between both calculations (number of atoms
for the larger supercell increases two times) is obvious.

Finally, in Fig. 9, for the trilayer Cos/{CugsNiy5)s/Cos we compare
the results of the supercell calculations with CPA-type transport calcu-
lations neglecting vertex corrections. In this limit we can still use the
expression given by Eq. (8) but now specified to the 1x1-supercell case
and with gf'f,(z) and gﬁ,i (z) substituted by <g’f'§,(z)> and <gf,i (z)>,
where (...} denotes the CPA configurational averaging. The essence of
the approximation thus consists in an independent configurational aver-
age of two Green functions keeping in mind that quantities BY (E) and
B%(E) are related to non-random leads. The results now also depend
on the choice of layers 1 and N between which we determine the conduc-
tance, i.e., the results neglecting vertex corrections which are based on
Eqs. (8) and (13) are no longer identical. The CPA results are qualita-
tively similar to those obtained from the supercell calculations although
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"the CPA conductances are somewhat smaller, indicating perhaps that
using a CPA-type approach vertex corrections ought to be included for
CPP transport.

CONCLUSIONS AND OUTLOOK

We have presented an ab initio formulation of CPP transport in mag-
netic trilayers (spin valves). The approach is formulated within the
framework of the TB-LMTQO method and surface Green functions and
can easily be generalized to lateral supercells, in particular since the
lead supercell surface Green functions can be obtained from the surface
Green function of the original two-dimensional lattice by means of a
lattice Fourier transformation.

‘We have considered a number of interesting geometrical arrangements
for both the ballistic and diffusive transport and discussed the results
of the numerical calculations in terms of partial conductances of the 1-
and J-channels in the F and AF alignments. Although all calculations
were done for the reference Co/Cu/Co(001) trilayer the present results
have a broader validity because in quite a few binary magnetic systems
the scattering in one spin channel can be significantly larger than in the
other channel. We also discussed the effect of quantum oscillations of the
magnetocurrent. Extensive numerical tests seem to indicate that already
5x 5-supercells containing 25 atoms averaged over a limited number of
random configurations (typically a configurational average over 5 differ-

ent configurations was employed) give representative results for the CPP
magnetoconductance. The present approach can also be generalized to

the case of transport across a barrier (semiconductor or transition-metal
oxide spacer or vacuum) as well as to the case of superconductor-metal
interfaces.
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