PHYSICAL REVIEW B VOLUME 62, NUMBER 22 1 DECEMBER 2000-I1

Ab initio theory of perpendicular magnetotransport in metallic multilayers

J. Kudrnovsky*?* V. Drchall? C. Blaas? P. Weinbergef,|. Turek?® and P. Brund
Linstitute of Physics, Academy of Sciences of the Czech Republic, Na Slovance 2, CZ-182 21 Prague 8, Czech Republic
2Center for Computational Materials Science, Technical University of Vienna, Getreidemarkt 9/158, A-1060 Vienna, Austria
3Institute of Physics of Materials, Academy of Sciences of the Czech RepidiiyaZz22, CZ-616 62 Brno, Czech Republic
“Max-Planck-Institut fu Mikrostrukturphysik, Weinberg 2, D-06120 Halle, Germany
(Received 4 February 2000; revised manuscript received 13 Jung 2000

The current-perpendicular-to-plat€PP magnetotransport of a metallic sample sandwiched by two ideal
leads is described at ab initio level. The so-called “active” part of the system is either a trilayer consisting
of two magnetic slabs of finite thickness separated by a nonmagnetic spacer or a multilayer formed by
alternating magnetic and nonmagnetic layers. We use a transmission matrix formulation of the conductance
based on surface Green'’s functions as formulated by means of the tight-binding linear muffin-tin orbital
method. The formalism is extended to the case of lateral supercells with random arrangements of atoms of two
types, which in turn allows to deal with specular and diffusive scattering on equal footing, and which is
applicable also to the case of noncollinear alignments of the magnetization in the layers. Applications refer to
fcc-based Co/Cu/GQ601) trilayers and multilayers, considering in detail the effect of substitutional alloying in
the spacer and in the magnetic layers, as well as interdiffusion at the interfaces.

I. INTRODUCTION perturbations. A real multilayer system usually represents a
mixture of both intrinsic and extrinsic defects.
Transport in layered materials is subject of intensive the- Ab initio calculations of the GMR are still rather rare.
oretical investigations, in particular in view of the discovery W& mention a Boltzmann-type approach developed

of the giant magnetoresistancéGMR) in metallic [or multilayer systems within the relaxation-time
multilayerst? Various theoretical approaches for a free_approxmatlorﬂ which is limited to either weak scattering or

electron model or within a single-band tight-binding model V&Y low concentration limits. Typically, the electronic struc-

have been proposed, based on the semiclassical BoItzma{ﬁ re of a three-dimensional periodsofinite) multilayer sys-

i lternatively. on a Kubo-Greenwood-tvpe for- is determined, in particular the velocities at the Fermi
equation or, after Y, 0d-typ surface. Then, in separate calculations, the spin-dependent
mulation with random point scatterers. A description of ex-

. . . relaxation time of bulk impurities is found and used to solve
perimental and theoretical results can be found in a recenj,q (classical Boltzmann equation. Clearly, the change of

review articlé (see also Ref. 4 Up to now the GMR effect — the syperlattice band structure due to impurities is neglected,
has been observed mostly in the diffusive transport regime ijence the above-mentioned limitations of the method. A so-
which the mean free path is much smaller than the dimensiofytion of the Boltzmann equation for layered systems without
of the so-called “active” part of the multilayer system, i.e., the relaxation-time approximation has also been suggésted.
the whole system with exception of the leads. Most of theRecently,ab initio calculations using a Kubo-Greenwood ap-
measurements up to date were performed in the current-irproach generalized to layered systéifsand applied to the
plane (CIP) geometry* the current-perpendicular-to-plane CIP geometry have appeared. In héseabstitutiongl disor-
(CPP geometry seems to be experimentally more challeng-der is included within an inhomogeneous coherent potential
ing. From a theoretical point of view CPP transport is inter-approximation(CPA). This is an appropriate approach to
esting because of the obvious role played by interfaces, itdeal with the influence of imperfections and to treat intrinsic
close relation to tunneling across an insulator or vacuum, andnd extrinsic scattering on equal footing. However, up to
because of its relation to a semiclassical view of ballisticnow in there the so-called vertex corrections with respect to
transport The present theoretical understanding of the CPRhe configurational average of the products of two single
transport has been reviewed in a recent pipecjuding the  particle Green’s functions are neglected, an approximation
transport in the ballistic regime. In this regime, in contrast tothat seems to be more justified for the CIP geometry than for
the diffusive regime, the mean free path is larger than thehe CPP geometry. In principle, however, the above-
dimension of the active part of the multilayer system. Spin-mentioned approaches can be used for both the CIP and CPP
dependent scattering at ideal interfaces between magnetigzometry.

and nonmagnetic layers, the so-called intrinsic potential or An alternative theoretical approach based on nonequilib-
specular scattering, is usually said to be the origin of thaium Green’s functions or on a transmission matrix formal-
GMR in the ballistic regimé. In the diffusive regime the ism (Landauer-type approaghan be used for the CPP trans-
GMR is thought to originate from spin-dependent scatteringport. A useful review of these techniques based on the
off impurities in the bulk and/or at interfaces between theevaluation of the transmission matrix can be found in a re-
magnetic slabs and the spacextrinsic defects It should be  cent monograpft

noted that in real multilayers also dislocations or stacking It is the aim of this paper to formulate a surface Green’s
faults occur, and magnons and phonons can cause dynamidahction (SGP approach to CPP transport in magnetic mul-
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tilayers within th2e tight-binding linear muffin-tin orbital'B- H2 o =C& SrprdLLr

LMTO) method? and to extend it to the case of lateral two- '

dimensional supercells with random occupation of lattice +(AZ)YHSI1- (v = B)SP]T YririLr
sites by two kinds of atoms. Our description thus allows us

to treat specular and diffusive scattering on equal footing and X (Ag )2 (1)

on quantitative level, which is impossible in model calcula- ) o . o

tions. This concerns, in particular, a detailed quantitative dehereR is the site indexor is the spin index¢=1,1), and
scription of the electronic structure of the active part of thethe potential parameteiSg, , Ag, , and yg are diagonal
sample as well as of its leads. The usefulness of such amatrices with respect to the angular momentura (/'m).
approach was recently illustrated for single-bird and  The nonrandom screened structure constants nﬁ@ﬂyﬁ,u
two-band® TB models while empirical multiband tight- and the site-diagonal screening matdy =8 o are
binding (TB) models were limited to specular scatteringsspin independent. Assuming one and the same two-
only. 19 We therefore present a systematic study of thedimensional translational symmetry in each atomic layer
combined effect of specular and diffusive scatterings in varik projections can be defined, whekgis a vector from the
ous part of the system, namely of substitutional alloying incorresponding surface Brillouin zon&B2). In a principal
the spacer, in the magnetic slabs, and at their interfaces. Thgyer formalism:? the screened structure consta@ﬁ:q are
applications discussed refer to Co/Cu(Q@D)-based trilay-  of block tridiagonal form. Neglecting layer relaxations they
ers. An important part of this study is also the developmentre given by

of a formal theory of the Landauer-Biker-type approach to

layered system in the framework of the TB-LMTO method. Sgo(ku)i q=p

The computational scheme developed scales linearly with the B] K a=pt1

number of principal layers and its efficiency is further in- S (ki) = Soakps q=p+ @
creased by evaluating the lead supercell SGF from the SGF p.a\ Sfo(k”); q=p-1

of the original two-dimensional lattice by means of a lattice 0_’ otherwise

Fourier transformation. This makes it possible to apply the
supercell approach oab initio level to relatively large ran-

The properties of individual atoms occupying lattice sites are
dom supercells.

characterized by screened potential function matrices:

Il. FORMALISM z—Cg.

PgLU(Z): > > 5oy
Suppose the magnetic multilayer system consists of non- Ar t (Y= BL) (2= Cgy)
random semi-infinite left £) and right (R) leads sandwich-
ing a trilayer consisting of a left and a right magnetic slab of
ing thick ted b ti _ . 2
vaying |iekness separa sc By & nonmagnetc spacer atomic layer p for 1X1 supercells, and, in principle,

varying thickness. It should be noted that left and right lead ) Bo
and magnetic slabs can consist of different metals. A repetit1 N different valuesP(z) for n;xn; supercells.

tion consists of two bilayers each of them formed by non-
magnetic and magnetic layers such that a ferromagnetic and B. Surface Green’s function

an antiferromagnetic configuration per repetition can be Within the TB-LMTO approach the Green's function

form.e.d..A special case of a trilayef consists of noprgndoWGH matrix G is given in terms of the auxiliary GF matrix
semi-infinite left and right magnetic leads sandwiching a_g s 12

nonmagnetic spacer. g
In principle, atomic layers can be viewed in terms of . - -
princip y . . 9?7k 2) =[PP (2) - SP(kp] ™™, 4
n;xXn, supercells ;Xn, two-dimensional complex lat-
tice). In order to describe disordésubstitutional binary al-  namely as an infinite matrix with respect to the layer indices
loys) it is then necessary to average over different occupap q. Assuming that the active part of the multilayer system
tions of the sites within the supercell by the two constituentsonsists ofN layers and that the physical properties of all

involved and, at the end, to check the dependence of condugead layers are identical, so-called embedding potentials
tances on the supercell size. The stacking of such randoms.#12 c3n pe defined, which fop=1 andp=N are given

layers in the growth direction can be arbitrary. Quite clearlybg,’
such an approach applies to disordered spacers and/or mag-
netic slabs as well as to disordered interfaces. B (kNGB (ki . 2)SB (k) -1

In the following we neglect possible layer and lattice re- ol H)gg 0( 1:2)%akps P
laxations in the system; all formulations are based on an I's“(k;,2)= S5k GR (k. 2)SEok);  p=N
infinite parent latticé? 0: otherwise,

©)

whereG?? , X=L,R, are the corresponding surface Green’s
Within a nonrelativistic approach the electronic structurefunctions(SGF’9 of the ideal left and right leads.

of the system is described in terms of the followilegthogo- The layer-diagonal blocks of the inverse of the auxiliary

nal) TB-LMTO Hamiltonian: Green’s function matrix can then be written as

3

which are diagonal with respect to The potential functions
sume the same vaIlE%'”(z) for each site within a given

A. Electronic structure
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[gP (K 'Z)]E,;la where tr denotes the trace over angular momenta and sites

per unit cell in a principal layer,
P(2)-SEg(k)—T57(k,2); p=1

—{ PE(2)— Sk 1<p<N BY(ky,E)=i[TF(k,z:) ~T2(k),2-)],
PR(2)=S6g (k) =TR7(kj,2);  p=N, BY(ky E)=i[T£7(k,z.)~TE%(k,z)], (10
) andz. =E=ié. In this formulation we have assumed a col-
while its off-diagonal blocks (%&p,q=<N) are given by linear spin structure, a generalization to noncollinear cases is
given in Sec. Il D. The magnetoresistance ratio is then de-
—S64(kp); g=p+1 fined as
B,o -1_ _ . —n—
(9 (kH 12)]p,q S’fo(ku), q=p-1 (7) GMR—Rar/ Rem— 1= Ceml/Car— 1,
0; otherwise.
—ol Lol
It should be noted that Eq&)—(7) only apply in the case of Cu=CutCu, (1)

an infinite parent latticéno layer relaxations In this way where Ry, = 1/C,, is the resistance per interface atom.
the originally infinite matrix can easily be reduced to a finite  |; <hould be noted that the total transmittance is the sum

mat(rji_x_ with tﬂe t;almbkedpgng potle?tials_ acting a:cs hbogndaryof the transmission coefficients corresponding to all channels
conditions. The bloc ',t” lagonal form 1n EG) of the IN" associated with a particuléy. Therefore it may in general be
verse of the Green's function allows to use efficient,  mper larger than 1. The total number of chanfyispa-

2,21 H . . .
mﬁg{trhodé to determine any nonvanishing b’LOCk of gating and evanesceris equal to the dimension of the ma-
g%%(ku ). In parﬁ;u;:ular, this applies to the block\((2).  trices that enter Eq9). The number of propagating channels
gn1(2), andforgy(z) which are needed to evaluate the is i, dependent. Similarly, the total reflectance may in gen-
GMR described in the next subsection. For further detailssral be a number larger than 1 because the evanescent
concerning the TB-LMTO method for layered systems wemgdes, which do not contribute to transport, formally appear
refer the reader to a recent bobk. here as channels with a reflection coefficient equal to 1.

In the case of two-dimensional X n, (latera) supercells In the (supercell ballistic transport the choice of layers 1
the above expressions remain formally the same, howevegndN in Eq. (9) is arbitrary. Consequently, one can identify
each quantity has to be replaced by a supermatrix labeled kitem by viewing the leftsemi-infinitg system to consist of
the positions of the sites within a given supercell. In the casghe |eft lead andN— 1 layers in the active part of the system,
of binary substitutional alloys the corresponding potentialj e by using a different partitioning of the inverse of the
functions are assumed to have only two different values foigreen’s function matrix in Eq(6) (see the Appendix This
the two constituents involved, i.e., we neglect possible locajormulation gives identical results but has computational ad-
environment effects and short-range order within a given sugantages and was therefore employed in numerical studies in
percell. It should be noted, however, that in principle forthe next section.
each chosen supercell all inequivalent potential functions yntil now we have assumed simple systems with one
ought to be determined self-consister(#ge also Sec. Il A atom att, in the two-dimensional elementary cell with trans-

lation vectorsa; anda,. The corresponding basis vectors of

C. Magnetotransport the two-dimensional reciprocal space d&eandb,. Multi-
As is shown in the Appendix, the conductance per imer_laye.rs_ with disorder in the activ_e.region can be repre_sented
face atom can be expressed as by finite supercells each containimgnonequivalent lattice

sites occupied randomly by various atomic species. Let us
e? 1 assume that the supercell translation vectors/gre nia;
Cu=2> Ch. CO=h N > Tak.Ep,  (®  andA,=n,a, (n;xn, supercelln=n,n,). The basis vec-
7 Ik tors of the supercell reciprocal space &g=b,/n; andB,

whereN; is the number ok points in the SBZEg is the ~ =bz/np. The positions of atoms in the supercell are
Fermi energyg is the electron chargéy is the Planck con- =iia+isa+ty, where i=(iy,i;), O<ij=n—1. The
stant(the quantity 2%/h is usually called the conductance reciprocal-lattice  vectors Q;=j,B;+j,B;, where j
quantum, andM =FM (AF) denotes the ferromagnetian- = (j1,J2), map the original SBZ onto the supercell SBZ

tiferromagneti¢ configuration of the magnetizations in the (SCSB2 in the sense that for eadt)e SBZ there exist just
magnetic slabs. Furthermore, the transmission coefficientgne de SCSBZ and just on€; (0=<jj=n;—1) such that
T7(k;,E) can be replaced by kj=q,+Qj- o _ _ _

A generalization to supercells is easily achieved by sub-

" 1 o o stituting corresponding matrices by supermatrices labeled by
T7(kj,E)= lim §tr{Bl' (kj B)grN (k,z+) individual atoms within a supercell. One can express the su-
o0 percell(SC) SGF therefore in terms of the SGF of the origi-
X Bnﬁl'g(ku ,E)gﬁji‘(ku Z )+ Bf’”(ku E) nal lattice as follows:

X gr (K, )BR (k) E)aRf (k) .z,

sc 1o —iOi(ti—t:
(9) gi'i,(q”'Z):ﬁjzl € Qj(t' t )Q(QH"'Q],Z): (12)
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which significantly improves the efficiency of calculations. (15) for the left semi-infinite system, the right semi-infinite
system, and thath layer in the active part of the system,
D. Generalization to the noncollinear case respectively, and denotes the thickness of the domain wall

Magnetotransport in systems with noncollinearly alignedIn r_lr_1r(1)nolayebr's(MdL sﬁz £ intrinsi q insic def il
magnetizations of the magnetic slabs, e.g., the domain-wajl 1N€ combined efiect of intrinsic and extrinsic defects will
magnetoresistance, requires to view the potential function@€ demonstrated for Co/Cu/Co-based trilayers, namely for:

and the screened structure constants &2 Zupermatrices (1) interdiffused interfaces(ji) a random spacer sandwiched
in spin space. A rotation of the spin orientation in one par-Py ideal magnetic slabs, ar(di) an ideal Cu spacer sand-
ticular layerp by an angled, is then assumed to be with Wiched by alloyed magnetic slabs.

respect to the spin orientation of the topmost right magnetic

layer of the active part of the system@=£0). Quite clearly,

all translationally invariant atoms in a given plane of atoms A. Numerical implementation
have to have the same spin orientatf8iThe potential func- Layer-wise substitutional alloy&, B, are simulated by
tion in the local(rotated coordinate system is block diagonal randomly occupying a chosefin-plane supercell withA
In Spin space, andB atoms, such that their ratio corresponds to the overall
81 concentratiorx. The random configurations were generated
PEI(z) O ; % )
PB(z)= 5 _ (13  using the RM48 random number generat@nd the binary
P 0 Py (2) correlation function was evaluated to test the “randomness”

f each generated configuration. We have used55and
X7 supercells corresponding roughly toAgsB,5 random
substitutional alloy, namely, 2A atoms and 48 atoms for
PH(z,6,)=U(6,)P(2)U"(6,) (14)  the 5x5 supercell, 41A atoms and & atoms for the K7
supercell. In all casegypically an average over five configu-
rations for a 55 supercell and an average over three con-
) figurations for a & 7 supercell were calculatgthe results

It can be expressed in the global coordinate system by th
following similarity transformation

using the unitary rotation matrices By,

c s
(150  for the partial currents agreed within 1-3 % with each other,

wore

-s ¢ the agreement being better for larger supercells.
where c=cos@2), s=sin(/2). The structure constants in !N principle, one should use self-consistent potential pa-
the global coordinate system are block diagonal, rameters corresponding to each configuration chosen and
each size of supercell assumed. However, since such an ap-
S (kp 0 proach is numerically prohibitve we have used self-
Sk = 0 Bk )), (16)  consistent CPA potential parameters determined for a given
pa (K| alloy compositioh? also in the present supercell calculations.
and g, (k) = SE; (k). The corresponding Green’s function It should be noted that the same parameters were employed
can be now obtained using Eq44) and(16). for various random configurations and different supercell
sizes. We have thus neglected all possible fluctuations of the
IIl. RESULTS AND DISCUSSION potential parameters due to a variation of the local environ-

) ~ment and assumed that the potential parameters take only
We have performed calculations for the following yyq values, namely the same for aAyandB atom within a
multilayer system: supercell. For cases of ax2 supercell(simulating A<B s
alloys) and a 3x 3 supercell(simulating AggB1; alloys) we
CcL(00]) Mun Ss Min cuoo)) found that the fluctuations of the calculated potential param-
eters forA and B atoms for different random configurations
from those obtained self-consistently using the CPA are
17 quite small(of the order of a few percentThe potential
where the number of atomic layers in the active part of theparameters were determined self-consistently for each type
system isN=2m+s, and all calculations are based on a fccof interface occurring in the system. Furthermore, we have
Co(001) parent lattice. neglected the weak layer dependence of the potential param-
For Cq,/Cus/Co,, trilayers we have studied in the ballis- eters close to the interface and used their bulklike values.
tic limit the dependence of the GMR on the thickness of the The k integration covers 10000 points in the full fcc
magnetic slabsn and the oscillatory behavior of the GMR (001) SBZ (400 or 196 points in the correspondingks or
with respect to the spacer thicknessWe then studied the 7x7 supercell SBZ In some cases, e.g., for the study of the
effect of repeating a magnetic multilayer system by considoscillatory behavior of the GMR as a function of the spacer
ering the case of Cu(001)/@0usCos(CusCos), /Cu(001), thickness, a much higher number lof points was used to
which for r=0 reduces to a simple trilayer. As an exampleobtain well converged results. In all cases we have employed
for noncollinear arrangements, we assumed a model foilmz.|=10 7 Ry. It should be noted that for axi1 super-
transport through a domain wall by considering the systentell one can integrate over the irreducible part of the SBZ
Co(001)/Ce/Co(001) with 6, =0, 6g=m, and 6,  while for random supercells the integration has to be ex-
=(mn)/D, wheref_, 0r, and 6, refer to the angles in Eq. tended to the full supercell SBZ.

semi-infinitg]| magmeti¢ spacermagnetig¢ semi-infinite
left lead slab slab right lead
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B. Ballistic transport 125 T T T T T
We shall start our discussion by a remark concerning 100 - i
some general features of the electronic structure of Cu band
and of Co spin-up {) and Co spin-down () bands at the & 75} -
Fermi energy of Cu leads. It should be noted that byg
“pbands” we mean the bands of the three-dimensional peri-S 0 *
odic bulk systems fcc Cu and fcc Co. Since the Cu and the ’s |
Col bands are very similar, they introduce only a very weak @
intrinsic scattering at the Cu/Co interface. Consequently, the 0 L L L L L
transmission off electrons for a ferromagnetic alignment of 0 10 20 30 40 50
the magnetizationgand hence also the corresponding con- Magnetic layer thickness (MLs)
ductance, see E@9)] through the Co/Cu interfaces is large.
As the large difference between the Cu and ®ands can Lo
be viewed as an effective potential barrier at the interface for ' ' ' ' ' '
| electrons, this in turn gives rise to much smaller Fihd 09 1, ® -
AF conductances. It should be noted that in here we studyz o3 &i&m i
only symmetrical trilayers implying identical values for the & | littetssssttttttbbbbbbbsbssbbbbbsbbbsbsbibibits +
. . . . B 07 4
spin-up and spin-down conductances in the AF configura-
tion. Finally, partial conductances in the ballistic regime, € 06 B .
namely spin-up and spin-down conductances for the FM anc § 05 ’,x‘; i
AF configurations are independent of the sample thickness< / ‘3 x
with exception of possible quantum-size oscillatigsse be- g 04 v ¥ L 0.0 T ‘]
low). £ osf ;;gf';y;v MM A A A s aaai st aaia st i si it A
= ARV Cocacae Fea2and 2200000225 0220282 208
) ) S 02 s
1. Dependence on the thickness of magnetic slabs ol
_The dependenqe of the GMR of ide_al ,Q@%/an 0o . . . . .
trilayers on the thickness of the magnetic slabds pre- "o 10 20 30 40 50

sented in Fig. 1. The most remarkable feature is a stronc

Magnetic layer thickness (MLs)

suppression of the GMRFig. 1(a)] for small thicknesses and . . .
a saturation at about 100% at large thicknesses. As can be FIG. 1. Ideal Cg/Cus/Coy, trilayers sandwiched by semi-
seen from the partia' conductances shown in F@) the infinite Cu leads with varying thickness of the magnetic slabga)
oscillatory behavior of the magnetoresistance in Fig) is magnetoresistance ratigiamond$ and the limit of semi-infinite
caused by the oscillatory behavior of the FMnd AF con- Cq sIabs(byIIet); (b) conductanges per atom for Fhe ferromagngtic
ductances. Similar oscillations are also seen in the simpleiP" (UP triangles, ferromagnetic| spin (down triangles and an-
case of a single Co slab of varying thickness embedded intfferromagnetic configuratiofdiamonds. Empty symbols(up and
the Cu hosfempty symbols in Fig. (b)]. It should be noted own triangle} refer to the ferromagneti¢ and | spin conduc-
that the GMR of finite Co slabs heve'r reaches the limit oftances of a single Co slab of varying thickness embedded into a Cu

S ) L host. For semi-infinite Co slabs the ferromagneti¢+), | (X),
semi-infinite Co slabs since the ballistic conductances of C : :
leads in the case of finite Co slabs are different from those nd antiferromagnetidbulley conductances are shown, respec-

. N ) ively.

Co leads in the case of semi-infinite Co leads. The mentioned y
suppression of the GMR is quite likely due to an effective _
potential barrier in thed| channel because of the above- Nates mostly from the FM conductance whose amplitudes
a narrower magnetic slab allows for a larger transmission ofM1 conductance is essentially thickness independent. We
electrons in the FM and both AF channels. Consequently, 0bserve oscillations with a period of about 5-6 ML's for the
the total AF conductance increases faster than the total FNtM| and AF conductance and, in addition, some admixture

conductance and hence the GMR ratio drégme also Ref. Of short-period oscillations with a period of about 2.5 ML's
19). is seen for the FM conductance. These periods correlate

reasonably well with similar values obtained for the inter-
layer exchange coupling using the same electronic structure

o i model (see, e.g., Ref. 33 The amplitudes are roughly
The effect of quantum current oscillations was studied bydamped as !, wheres is the spacer thicknegs.

Mathon'” using an empirical multiband TB model within a
Kubo-Landauer-type approach by considering the depen-
dence of the GMR on the thickness of the spacer. In Fig. 2
we present such a study for Q€u,/Cos trilayers with vary- GMR measurements are usually performed for two differ-
ing spacer thickness We clearly observe pronounced GMR ent kinds of systems, namel(i) spin valves modeled in the
oscillations[Fig. 2(@] around a value of about 115% which present paper by a trilayer afid) repeated multilayers. Such
are damped with increasing spacer thickness. A clearer pig repeated multilayer is modeled in here by adding a finite
ture is obtained by looking at the partial conductances. Fronmumber of repetitions GCosCusCos to the reference trilayer
Fig. 2(b) it can be seen that the oscillatory behavior origi- CosCusCos (either from the left or from the rightand then

2. Dependence on the thickness of the spacer

3. CdCu multilayers
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FIG. 2. Io!eal Cg/_Cus/Co:—, trilaye_rs sandwiched by semi.-infinite FIG. 3. Co/Cu multilayer treated as an ideal trilayer
Cu_ Iea_ds with varying spacer thickness (a) magnetore5|stanc_e Cos/Cls /Cos(CU.COCCas), with r repetitions of the type
rat_lo(dlamond_ss; (b) conductanges peratom_for the ferronjagn@tlc (CCoCuCas) and sandwiched by semi-infinite Cu leads)
spin (down triangles and antiferromagnetic configuratiofia- 5 gnetoresistance ratidiamonds; (b) conductances per atom for
m_onds). Note the reduced scale on the vertical axis compared tOhe ferromagnetid spin (up triangles, ferromagnetic, spin (down
Fig. 1. triangles, and antiferromagnetic configuratiédiamonds. The val-

L L ues forr=0 correspond to the trilayer GACus/Cos.
sandwiching the system by semi-infinite Cu leads. The cho-
2?(2@???230:?2%?6 Oifm5e CIZ# t'\k/:le; striclzgr;erspon(és to(sthe A'%;an be seen from this figure a large DWMR is only obtained

9 pling reg . yer {LusCo; (see . for domain-wall thicknesses of atomic scalso-called
Ref. 23 for an evaluation of the interlayer exchange COUpImQ:onstriction%“S) while for thicker domain walls the DWMR
W'th'r.] the present modgl Figure 3.Sh°WS . GMR as a quickly drops to almost zero. By comparing these with the
function of the ”“”.‘ber of repetitions (each repetition ferromagnetic conductance, it is obvious from Figo)4that
amounts to 20 atomic laygrsvherebyr =0 corr_esponds_to %he conductance is decreased by the presence of domain
the reference trilayer. We observe a rather rapid formation ofalls Finally, we mention that the conductance varies as
a saturation va!ueé_approximgtely tWi(?Ef as big as th_e yalue D1 ie. the! resistance varies approximately linearly with
for a wilayey W'th.'n about f'Ve. repetitions, the oscillations the domain-wall thickness. All these results are in agreement
abopt the saturation value 'belng very small. These fgatur%ith the conclusions in Ref. 27. It should be noted, however
iat‘rfsIr(;Sv%%%df?(?r;eirinené)\)IVIttrr\]aE[ht?]see iwczjé:tfl?hgagﬁgarthat further studies are needed, in particular including the

. 9. D) effect of impurities?® but also considering more realistic
with the number of repetitions can be related to a COIey - riations of the laver-wise rotation analé
sponding decrease in the AF conductance. y gies-

4. Domain-wall magnetoresistance C. Combined ballistic and diffusive transport

The problem of a domain-wall magnetoresistance In real systems, in addition to specular scattering at intrin-
(DWMR) was addressed recently using médétas well as  sic defectssystem interfac@shere is scattering at extrinsic
realisti¢’ calculations. As an illustration for perpendicular defects, namely at impurities, stacking faults, dislocations,
electric transport in noncollinearly ordered structures in Figand there are even dynamical effects like scattering of elec-
4 a first study of the DWMR for domain walls of varying trons with phonons or magnons. In here we consider only
thickness is shown. In this model calculations we simplysubstitutional impurities in the spacer, magnetic slabs, and at
assume a linear variation of the layer-wise rotation angldgheir interfaces in a reference system which consists of left
6,=(7n)/D within a domain wall of the thicknesB. As  and right semi-infinite Cu leads sandwiching two Co slabs,
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FIG. 4. A magnetic domain wall of varying thickness sand- . . . o . )
wiched by antiferromagnetically aligned semi-infinite Co leads. The  FIG- 5. Comparison of trilayers with 15%-interdiffused inter-
layer-wise magnetization rotation angle varies linearly with thefaces with ideal Co/Cu/Cos trilayers sandwiched by semi-infinite

domain-wall thickness between 0 and (2) domain-wall magne- Cu leads as a function of the spacer thicknes® magnetoresis-

toresistance ratidb) total conductances per atom for the ferromag- .tance.ratio(diamlon.ds, ideal trilayer; up triangle{i), one Qf the
netic configuration(up triangle, and for the domain wal{down inner interfaces is interdiffused; empty up triang(@s both inner

triangles. Ferromagnetic configuration is infinite Co bulk. interfaces are interdiffused; down trianglé®, two inner and one
of outer interfaces are interdiffused; empty down triand®s all

, . . _four interfaces are interdiffusgdb) conductances per atom for the

each 5 ML'’s thick, and separated by a Cu spacer of VarymgerromagneticT spin (up triangle$, ferromagnetic| spin (down

thickn_ess(l—lO M.L,S)' "." general, disorder can cause thetriangles}, and antiferromagnetic configuratiofiamond$. Full
foIIowmg eﬁe(_:ts' (,') an 'ncreaS,e of the overall amount of symbols refer to an ideal trilayer, empty symbols to a trilayer with
scattering which in turn contributes to a reduction of theg interfaces interdiffused.

transmission probability(ii) a violation of the strict conser-

vation of thek; vector belonging to the SBZ of leads can faces, and disorder suppresses the oscillations present for
open new transmission channels which contribute to an injea| interfaces. Disorder influences the FMonductance
crease of the conductand@i) interdiffusion smoothens the yery weakly because the Cu bands are similar in shape to the
potential barrier in the ideal trilayer which in turn also IeadsCOT bands. The AF conductance, however, is much larger
to an increased transmission coefficient; &ivd alloying in  than the one for the ideal trilayer and origins of this effect
the magnetic layers can mcrea(slgcreas)ethe effective bar-  \yere discussed aboysee pointgii) and (iii) at the begin-

rier for electrons at the Co/Cu interface and thus decreaSﬁfIng of Sec. Il d. Similar, but weaker effect, is observed
(increasg the conductance in this channel. Therefore the neg g for FM| conductance. It could be concluded therefore
influence of disorder on the conductance results from a comat the decrease of the GMR is controlled by the increase of
petition between all these effects and may lead to an increasgr conductance due to the interface interdiffusion. It should
or decrease of the conductance, depending on the systefa noted that partial conductances remain constant with the

under consideratio(see also Ref. 29 varying spacer thickness as the number of disordered layers
does not change and possible quantum oscillations are
1. Interface interdiffusion damped by disorder.

The effect of disorder at the Co/Cu interfaces is shown in
Fig. 5. The interdiffused interface extends over two neigh-
boring layers of compositions G¢Cu;5 (on the Co sidgand The effect of alloying in the nonmagnetic spacer
Coy5Cugs (on the Cu side As can be seen the GMR de- (CugsPdis and CuygPdy;) on the magnetoresistance is pre-
creases monotonically with the number of disordered intersented in Fig. 6. We observe a monotonic decrease of the

2. Disorder in the spacer
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FIG. 6. Comparison of G@(Cujpe xPd)s/Cos trilayers (x FIG. 7. Comparison of (G@Niys5)5/Cus/(CogsNiyg)s trilayers
=15 and 50 with ideal Cg/Cu/Co; trilayers sandwiched by with ideal Cg/Cus/Cos trilayers sandwiched by semi-infinite Cu
semi-infinite Cu leads as a function of the spacer thickrsesa) leads as a function of the spacer thicknes&) magnetoresistance

magnetoresistance rat{diamonds, ideal trilayer; full triangles, al- ratio (diamonds, ideal trilayer; triangles, alloyed magnetic slabs
loyed spacer withx=15; empty triangles, alloyed spacer with  (b) conductances per atom for the ferromagnetispin (up tri-
=50); (b) conductances per atom for the ferromagnétispin (up angles$, ferromagnetic| spin (down triangley and antiferromag-
triangles, ferromagnetic, spin(down triangley and antiferromag- netic configuration(diamond$. Full symbols refer to an ideal
netic configuration(diamond$. Full symbols refer to an ideal trilayer, empty symbols to a trilayer with alloyed magnetic layers.
trilayer, empty symbols to a trilayer with an alloyed spacer corre- ) ) )
sponding tox=15. 3. Disorder in magnetic layers

The effect of alloying in the magnetic slabs on the mag-
GMR ratio as a function of the spacer thickn¢bgy. 6(a)]. netoresistance is shown in Figs. 7 and 8. In these we have
The origin of this decrease can be traced from Fidp).6lt  considered two different situations, namely ggti;5 and
should be noted that in Cu-rich alloys the states at the Fern€ogCr;5 magnetic slabs. In the former case the local mag-
energy are influenced only weakly by impurit@sThere-  netic moments of Co and Ni are oriented parallel while the
fore, the FM and AF conductances are only slightly smaller Co and Cr moments in GgCr;5 are aligned antiparallel.
than those of an ideal trilayer. Consequently, the effect oContrary to the case of disorder in the spacer in thg;igs
extrinsic potential scattering for the HMand AF conduc- case(Fig. 7) the GMR ratio quickly saturates at approxi-
tance is rather small as compared to the strong intrinsic scatnately half of the value for an ideal trilayer. The behavior of
tering at the interfaces. On the other hand, the effect of exthe partial conductances is similar to that for an interdiffused
trinsic defects dominates the KM conductance where interface. Due to the similarity of the Caand the Ni bands
intrinsic scattering is negligibly small. In fact it is the M  at the Fermi energy the FMconductance is nearly the same
channel which is mostly responsible for the decrease of thes for the ideal trilayer. Since the Cdands are higher in
GMR ratio with increasing spacer thickness. Essentially lin-energy as compared to the Nbands, alloying of Co with Ni
ear decrease of the FMconductance as a function of the decreases effectively the potential barrier height at the inter-
spacer thickness indicates the ohmic transport regime in thiace resulting thus in a larger transmission coefficigon-
case which is easy to understand as the number of disorderedictance as compared to the ideal trilayer. Consequently,
layers increases with the spacer thickness in contrast to thtae AF conductance of the alloyed magnetic layers is larger
previous case of interface interdiffusion. The above concluthan for an ideal trilayer. The same effect, but much weaker,
sions remain qualitatively the same for aggR, case but applies for the FNJ conductance indicating dominating in-
the effect of disorder is larger as compared to g£d;s trinsic scattering at interfaces for this channel. The behavior
spacer. of CogsCry5 magnetic slabs is quite differerisee Fig. 3,
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.\;,4\;_,\1_"4'*,,_; general, the GMR ratio decreases with introducing impurities
in different parts of the sample while the partial conduc-
900 - i tances may both increase or decrease due to disorder in lay-
8 ered systems. The present results seem to be valid for quite a
é 0.0 L ) few magnetic multilayer systems since the scattering at the
5 magnetic/nonmagnetic interface in one spin channel can sig-
nificantly be larger than in the other changgilarly as for
00 F @ |  the Co/Cu interface studied heréVe also discussed the ef-
Sy S U CIR fect of quantum oscillations of the magnetocurrent and qua-
0 2 4 6 8 10 siperiodicity in repeated multilayers. Extensive numerical
Spacer layer thickness (MLs) tests seem to indicate that already 5 supercells containing
25 atoms averaged over a limited number of random con-
figurations(typically a configurational average over five dif-
1.00 T T ' ' T ferent configurations was employedive representative re-
0.90 | ® sults for the CPP magnetoresistance. The present approach
- can also be generalized to the case of transport across a
S osof . . ) ) . .
v — e, barrier of a different kind such as in semiconductor or
g 00F 7 transition-metal oxide tunneling junctions.
& 060 | .
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FIG. 8. Comparison of (G@Crys5)5/Cus/(CogsCry5)5 trilayers
with ideal Cg/Cus/Cos trilayers sandwiched by semi-infinite Cu
leads as a function of the spacer thicknes&) magnetoresistance
ratio (diamonds, ideal trilayer; triangles, alloyed magnetic slabs
(b) conductances per atom for the ferromagnetispin (up tri- APPENDIX: CONDUCTANCE
angle$, ferromagnetic| spin (down triangleg and antiferromag-
netic configuration(diamond$. Full symbols refer to an ideal
trilayer, empty symbols to a trilayer with alloyed magnetic layers.

The orthogonal Hamiltonian given in Eq@l) yields an
accurate description of the electronic structure for most
close-packed transition-metal systems but it is not short

because due to the antiparallel orientation of moments for C{,a_”ftJed- FOfta phySIf_ally n|10re transp?]\;nt ((jjem;)at;or;]oftelec-
and Cr sites, even the FMconductance is influenced by fic transport properties a less accuréitest-orde) but short-

disorder. In fact, in all channels the conductance is now ap
proximately the same, causing the GMR ratio to be strongly

ranged Hamiltoniad?>! defined as

B.o — T L0\ 1128 B.o 12
suppressed. HRl L = CRL dree S+ (AR Sp i (ARTNMA
(A1)
IV. CONCLUSIONS represents a much better starting point. This Hamiltonian re-

L fers to the following approximation for the screened poten-
We have presented a systemadib initio study of the tial functions g app P

influence of alloying in the spacer, magnetic layers, and at

interfaces on the CPP transport in magnetic multilayers. The .o

electronic structure is described by the TB-LMTO method =50, 2~ Cri
) ) o Pr’(2)=

while a Landauer-Bitiker-type approach formulated within A'SLU

the framework of surface Green’s functions is used to evalu-

ate transport properties. A generalization to noncollineawhere at a particular enerdy, namely, at the Fermi energy

magnetic configurations, as would apply for a description ofg; of the system, the potential paramet&@&” and A5”

domain walls, was also studied. have to fulfill the following conditiongcf. Egs. (3) and
We have considered a variety of magnetic multilayers(A2)]:

based on the reference Co/Cu(Q@)) trilayer system which

: (A2)

exhibit various kinds of transport ranging from the ballistic dPL(2) dPE(2)
regime to the diffusive regime. The results of the numerical P£7(Ep)=PE(Ep), —r| ———o
calculations were discussed in terms of partial conductances dz z=E¢ dz z=E¢

of theT and | channels in the FM and the AF alignment. In (A3)
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The matrix elements of the operator of theoordinate can The & functions in Eq.(A10) can be expressed in terms of

be approximated Wlthlﬂ the TB-LMTO formalism as the reso|vené(z):[z_|:|]71 of the Ham”tonianﬂ as
ZRLR'L' = ORLRIL'ZR (Ad) 1 . . ~ .
_ > |@)S(E—E,)(a|=5—[G(E~i0)~G(E+i0)],
wherezg denotes the coordinate of the center of theth @ 2
Wigner-Seitz sphere. This approximation was used in previ- (A11)

ous TB-LMTO studies of electron transpSrt>and its more
detailed discussion will be given elsewhéfe.

The short-ranged Hamiltonian given in E@A1) can be 2 A . A .
written as a sum ovek; vectors. Let us consider the Hamil- C(E)= ﬁTr{(Hpﬂyp— Hp.p+ 1) [G(E—i0)—G(E+i0)]
ton operator of a quasi-one-dimensional system for a particu-

such that

lar k; vector (variablek; is omitted herg X(Ags 14— Fgqr DIG(E—i10)—G(E+i0)T},
- N - - (A12)
A= [FpptFppratFppo1l, (A5) o
p where Tr denotes the trace over all lattice sites and angular

momenta including the spin.
The total conductance per two-dimensional elementary
cell is then given by the Kubo-Greenwood formula as

with interactions only between the neighboring principal lay-
ers p and whose blocks are given b&lp'q=1'[p|:|p'ql'[q
=1I,HII,, wherell, is a projector onto the layep.
The operatorZ of the coordinate perpendicular to the C—e—2 E i E
=2

atomic planes and the operafoof the corresponding veloc- N <
ity are then given by

dE[—"(E)]T"(k; ,E), (A13)
I
where f(E) is the Fermi-Dirac function. AT=0 the inte-

. . . d . . gration is trivial and all the quantities need to be evaluated
Z=d2 pIl,, v= .ﬁ[Z,H]= = 2 [Hp+1p—Hpprils only at the Fermi energ¥r. The transmission probability

P : 7" T7(k;,E) for the channelK,o) at energyE reduces there-
(AB) fore to
whered is the interlayer distance. 1

The operatod of the electric current perpendicular to the To(kj;E)= > 2 (— 1)’”ytr{Hg,p+1(kH)Gg+1,q(k|| Z,)

atomic layers can then be written as a sum of currégts 1 g

between layerp andp+1 XHE 41 1(KDGG: 1p(KjZ,) +HY, 1 (k)
.1 A A e . - X GY K,z )HS k)GY Ki,z,
J:M% Spper Jppra=i[Foesp— P el p.a+ 10K Z)H g1 19(K) G p (k) 2,)

(A7) ~Hpp+1(KPGpr1g+1(K),Z) Hgr14(K))
whereM is the number of layers which, in principle, has to X Gy p(K|:2,) —Hp. 1 p(KD Gy 4(Kj,2,0)

be taken to infinity. Note that the interlayer distarctélis- - -
appears due to the normalization. XHga+1(k) G p+a(ky2,)}- (AL4)
In the linear response regime the conductance for a paHere the indiceg:, v=1,2 are chosen such trat=E+i 4 if
ticular channel K ,0) at an energye can be expressed as =1, z,=E—id8if u=2, wheres is a small positive con-
stant, and similar relations apply faj. All quantities in Eq.
C(E)= 7 3 28(E—E VS(E—E A8 (A14) are matrices with respect to angular momentum indi-
(E)=m aE,B KaJIB)"e )3 o) (A8) cesL,L’ and tr denotes the trace over angular momenta. At

this stage, by setting=q=0 one can directly retrieve the
|.l7

ah . ) expression for conductance given by Mathaira

=— > (a|dp p+1lBY(BlIgq+1l@) (E—E,) Within the LMTO formalism by using Eqg4), (A1), and
M? «p paq (A2), and omitting for matters of simplicity the variable
X S(E—Ep). (A9) and the superscrig®, we obtain

In Eqg. (A8) |a@) and|B) are(orthonormalizepieigenstates of

the HamiltonianA, Eq. (A5). The double sum over the layer
indicesp andq in Eq. (A9) can be eliminated due to current - ”
conservatiori® The layer indicep andq may then be chosen +S1ddp,q+1(Zu) S1.8q,p+1(2)

arbitrarily which yields _ 80’193+ 1,q+1(z;1,)sl,(gg,p(zv)

1
T(E)=5 2 (~ 1" r{S,0714(2)S0.05 15(2)

C(E) =73, (al3ppsal BY(BlIqqsal) ~S105.0(2) 005+ 1p+1(2)} e
a,B

This expression is a formal modification of E¢A14),
X S(E—E,)8(E—Ep). (A10) namely the screened structure constaéhtnd the auxiliary
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Green’s functiong(z) substitute the Hamiltoniai and its " 1 ity ”

resolventG(z). It should be noted that the derivation of Eq. T(BE)= 2 MZV (=D*" S G1(2,)

(A15) was based on the first-order Hamiltonian, E41),

but as can be showhit is valid also for the orthogonal —GH(2,)150,197n(2,) S0 GR(2,)

LMTO Hamiltonian, Eq.(1). Furthermore, the expression in - ”

Eq. (A15) is invariant with respect to the LMTO representa- = G%(2,)1S108,1(2)} (A18)
ti?r;, i.e., one can use also the most localized representatiqipich is already equivalent to E¢9) because the terms
B for transport problems. = are zero and only termg # v contribute.

The expression in EA15) can further be simplified by The transmission coefficient consists of two terms
using surface Green'’s functions of the Igft7(z)] and right

[G%(2)] lead. We first sep=0, q=N and insert the identi- " 1 _. v
ties given below into EG(A15): T7(kj . B)=5[Ti(k . E)+T2(k; . B)],  (A19)
gl?l'+l,0(zv) :g%(zv)sl,(gﬁ,l(zv)Sl,OgZ(ZV)1 Tg(kH ,E): ||m Tr{Bf'U(kH !E)gf’l\llf(kH ,Z+)
6—0+

9on+1(2) =G7(2,) S0197N(Z,) S0,19%(2,.)
xBE (K E) gl (k.z-)}, (A20)
97n+1(2,) =097N(2,) S0,19%(2,)
T3(ky,E)= lim Tr{B{“(k;,E)a5y (kj,z-)
IN,0(Z,) =981(2,)S1,.97(2,), 80+
99N (Z,) = G2(2,) S0 199 N(Z,). X Bﬁ*"(k” ,E)gﬁ”‘{(ku Z) b (A21)
related by the identity

gﬁi+ 1,1(ZV) = g%(zv)sl,cgﬁl-,l(zv)v (A16)
which easily can be proved using the partitioning technique Ti(k, BE)=T(=k.E). (A22)
(see, e.g., Refs. 21 and)3@hus we obtain ConsequentlyT?(—k;,E)=T(k ,E), and therefore
To(E)= 1 2 1+t ” ” SBZ SBZ SBZ
(B)=3 & (T MS00in(2,)%0107(2,) > T, B)= 3 Ti(k )= T5(k;,E)
I I I
X S1,000.1(2,)S1,097(2,) + S1,697(2,.) So.197 N(Z,) Q
a o (o T =2 T7(k ,E . A23
X S0 1072, S1.0712,) ~ So.090(2,) 0105 (2,) > T B (A23)
X S1,008.1(2,)S1,094(2,) — S1,69(2,,) So. 197 N(Z,) The last sum is confined to one-half of the surface Brillouin
o - zone Q) (SBZ=QUI1Q, wherel is the operator of spatial
X S0,19%(2,) S1,008,4(2,)}- (AL7) inversion. By using Eq.(A23) one can speed up the calcu-
Using the cyclic invariance of the trace yields lation of conductance.
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