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Ab initio theory of perpendicular magnetotransport in metallic multilayers
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The current-perpendicular-to-plane~CPP! magnetotransport of a metallic sample sandwiched by two ideal
leads is described at anab initio level. The so-called ‘‘active’’ part of the system is either a trilayer consisting
of two magnetic slabs of finite thickness separated by a nonmagnetic spacer or a multilayer formed by
alternating magnetic and nonmagnetic layers. We use a transmission matrix formulation of the conductance
based on surface Green’s functions as formulated by means of the tight-binding linear muffin-tin orbital
method. The formalism is extended to the case of lateral supercells with random arrangements of atoms of two
types, which in turn allows to deal with specular and diffusive scattering on equal footing, and which is
applicable also to the case of noncollinear alignments of the magnetization in the layers. Applications refer to
fcc-based Co/Cu/Co~001! trilayers and multilayers, considering in detail the effect of substitutional alloying in
the spacer and in the magnetic layers, as well as interdiffusion at the interfaces.
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I. INTRODUCTION

Transport in layered materials is subject of intensive t
oretical investigations, in particular in view of the discove
of the giant magnetoresistance~GMR! in metallic
multilayers.1,2 Various theoretical approaches for a fre
electron model or within a single-band tight-binding mod
have been proposed, based on the semiclassical Boltzm
equation or, alternatively, on a Kubo-Greenwood-type f
mulation with random point scatterers. A description of e
perimental and theoretical results can be found in a rec
review article3 ~see also Ref. 4!. Up to now the GMR effect
has been observed mostly in the diffusive transport regim
which the mean free path is much smaller than the dimen
of the so-called ‘‘active’’ part of the multilayer system, i.e
the whole system with exception of the leads. Most of
measurements up to date were performed in the curren
plane ~CIP! geometry;1 the current-perpendicular-to-plan
~CPP! geometry2 seems to be experimentally more challen
ing. From a theoretical point of view CPP transport is int
esting because of the obvious role played by interfaces
close relation to tunneling across an insulator or vacuum,
because of its relation to a semiclassical view of ballis
transport.5 The present theoretical understanding of the C
transport has been reviewed in a recent paper,6 including the
transport in the ballistic regime. In this regime, in contrast
the diffusive regime, the mean free path is larger than
dimension of the active part of the multilayer system. Sp
dependent scattering at ideal interfaces between mag
and nonmagnetic layers, the so-called intrinsic potentia
specular scattering, is usually said to be the origin of
GMR in the ballistic regime.5 In the diffusive regime the
GMR is thought to originate from spin-dependent scatter
off impurities in the bulk and/or at interfaces between t
magnetic slabs and the spacer~extrinsic defects!. It should be
noted that in real multilayers also dislocations or stack
faults occur, and magnons and phonons can cause dynam
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perturbations. A real multilayer system usually represen
mixture of both intrinsic and extrinsic defects.

Ab initio calculations of the GMR are still rather rare
We mention a Boltzmann-type approach develop
for multilayer systems within the relaxation-tim
approximation,7 which is limited to either weak scattering o
very low concentration limits. Typically, the electronic stru
ture of a three-dimensional periodic~infinite! multilayer sys-
tem is determined, in particular the velocities at the Fer
surface. Then, in separate calculations, the spin-depen
relaxation time of bulk impurities is found and used to sol
the ~classical! Boltzmann equation. Clearly, the change
the superlattice band structure due to impurities is neglec
hence the above-mentioned limitations of the method. A
lution of the Boltzmann equation for layered systems witho
the relaxation-time approximation has also been sugges8

Recently,ab initio calculations using a Kubo-Greenwood a
proach generalized to layered systems9,10 and applied to the
CIP geometry have appeared. In here~substitutional! disor-
der is included within an inhomogeneous coherent poten
approximation~CPA!. This is an appropriate approach
deal with the influence of imperfections and to treat intrin
and extrinsic scattering on equal footing. However, up
now in there the so-called vertex corrections with respec
the configurational average of the products of two sin
particle Green’s functions are neglected, an approxima
that seems to be more justified for the CIP geometry than
the CPP geometry. In principle, however, the abov
mentioned approaches can be used for both the CIP and
geometry.

An alternative theoretical approach based on nonequ
rium Green’s functions or on a transmission matrix form
ism ~Landauer-type approach! can be used for the CPP tran
port. A useful review of these techniques based on
evaluation of the transmission matrix can be found in a
cent monograph.11

It is the aim of this paper to formulate a surface Gree
function ~SGF! approach to CPP transport in magnetic m
15 084 ©2000 The American Physical Society
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PRB 62 15 085AB INITIO THEORY OF PERPENDICULAR . . .
tilayers within the tight-binding linear muffin-tin orbital~TB-
LMTO! method12 and to extend it to the case of lateral tw
dimensional supercells with random occupation of latt
sites by two kinds of atoms. Our description thus allows
to treat specular and diffusive scattering on equal footing
on quantitative level, which is impossible in model calcu
tions. This concerns, in particular, a detailed quantitative
scription of the electronic structure of the active part of t
sample as well as of its leads. The usefulness of such
approach was recently illustrated for single-band13,14 and
two-band15 TB models while empirical multiband tight
binding ~TB! models were limited to specular scatterin
only.15–19 We therefore present a systematic study of
combined effect of specular and diffusive scatterings in v
ous part of the system, namely of substitutional alloying
the spacer, in the magnetic slabs, and at their interfaces.
applications discussed refer to Co/Cu/Co~001!-based trilay-
ers. An important part of this study is also the developm
of a formal theory of the Landauer-Bu¨ttiker-type approach to
layered system in the framework of the TB-LMTO metho
The computational scheme developed scales linearly with
number of principal layers and its efficiency is further i
creased by evaluating the lead supercell SGF from the S
of the original two-dimensional lattice by means of a latti
Fourier transformation. This makes it possible to apply
supercell approach onab initio level to relatively large ran-
dom supercells.

II. FORMALISM

Suppose the magnetic multilayer system consists of n
random semi-infinite left (L) and right (R) leads sandwich-
ing a trilayer consisting of a left and a right magnetic slab
varying thickness separated by a nonmagnetic space
varying thickness. It should be noted that left and right lea
and magnetic slabs can consist of different metals. A rep
tion consists of two bilayers each of them formed by no
magnetic and magnetic layers such that a ferromagnetic
an antiferromagnetic configuration per repetition can
formed. A special case of a trilayer consists of nonrand
semi-infinite left and right magnetic leads sandwiching
nonmagnetic spacer.

In principle, atomic layers can be viewed in terms
n13n2 supercells (n13n2 two-dimensional complex lat
tice!. In order to describe disorder~substitutional binary al-
loys! it is then necessary to average over different occu
tions of the sites within the supercell by the two constitue
involved and, at the end, to check the dependence of con
tances on the supercell size. The stacking of such ran
layers in the growth direction can be arbitrary. Quite clea
such an approach applies to disordered spacers and/or
netic slabs as well as to disordered interfaces.

In the following we neglect possible layer and lattice r
laxations in the system; all formulations are based on
infinite parent lattice.20

A. Electronic structure

Within a nonrelativistic approach the electronic structu
of the system is described in terms of the following~orthogo-
nal! TB-LMTO Hamiltonian:
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HRL,R8L8
g,s

5CRL
s dR,R8dL,L8

1~DRL
s !1/2$Sb@12~gs2b!Sb#21%RL,R8L8

3~DR8L8
s

!1/2, ~1!

whereR is the site index,s is the spin index (s5↑,↓), and
the potential parametersCRL

s , DRL
s , and gRL

s are diagonal
matrices with respect to the angular momentumL5(l m).
The nonrandom screened structure constants matrixSRL,R8L8

b

and the site-diagonal screening matrixbR,LL85bL dL,L8 are
spin independent. Assuming one and the same t
dimensional translational symmetry in each atomic layerp,
ki projections can be defined, whereki is a vector from the
corresponding surface Brillouin zone~SBZ!. In a principal
layer formalism,12 the screened structure constantsSp,q

b are
of block tridiagonal form. Neglecting layer relaxations the
are given by

Sp,q
b ~ki!55

S0,0
b ~ki!; q5p

S0,1
b ~ki!; q5p11

S1,0
b ~ki!; q5p21

0; otherwise.

~2!

The properties of individual atoms occupying lattice sites
characterized by screened potential function matrices:

PRL
b,s~z!5

z2CRL
s

DRL
s 1~gRL

s 2bL! ~z2CRL
s !

, ~3!

which are diagonal with respect toL. The potential functions
assume the same valuePp

b,s(z) for each site within a given
atomic layer p for 131 supercells, and, in principle
n13n2 different valuesPp,i

b,s(z) for n13n2 supercells.

B. Surface Green’s function

Within the TB-LMTO approach the Green’s functio
~GF! matrix Gs is given in terms of the auxiliary GF matrix
gb,s 12

gb,s~ki,z!5@Pb,s~z!2Sb~ki!#
21, ~4!

namely as an infinite matrix with respect to the layer indic
p,q. Assuming that the active part of the multilayer syste
consists ofN layers and that the physical properties of
lead layers are identical, so-called embedding potent
Gp

b,s12 can be defined, which forp51 andp5N are given
by

Gp
b,s~ki ,z!5H S1,0

b ~ki!GL
b,s~ki ,z!S0,1

b ~ki!; p51

S0,1
b ~ki!GR

b,s~ki ,z!S1,0
b ~ki!; p5N

0; otherwise,
~5!

whereGX
b,s , X5L,R, are the corresponding surface Green

functions~SGF’s! of the ideal left and right leads.
The layer-diagonal blocks of the inverse of the auxilia

Green’s function matrix can then be written as
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15 086 PRB 62J. KUDRNOVSKÝ et al.
@gb,s~ki ,z!#p,p
21

5H P1
b~z!2S0,0

b,s~ki!2G1
b,s~ki ,z!; p51

Pp
b~z!2S0,0

b,s~ki!; 1,p,N

PN
b~z!2S0,0

b,s~ki!2GN
b,s~ki ,z!; p5N,

~6!

while its off-diagonal blocks (1<p,q<N) are given by

@gb,s~ki ,z!#p,q
215H 2S0,1

b ~ki!; q5p11

2S1,0
b ~ki!; q5p21

0; otherwise.

~7!

It should be noted that Eqs.~5!–~7! only apply in the case o
an infinite parent lattice~no layer relaxations!. In this way
the originally infinite matrix can easily be reduced to a fin
matrix with the embedding potentials acting as bound
conditions. The block-tridiagonal form in Eq.~7! of the in-
verse of the Green’s function allows to use efficie
methods12,21 to determine any nonvanishing block o
gp,q

b,s(ki ,z). In particular, this applies to the blocksg1,N
b,s(z),

gN,1
b,s(z), and/or gN,N

b,s (z) which are needed to evaluate th
GMR described in the next subsection. For further det
concerning the TB-LMTO method for layered systems
refer the reader to a recent book.12

In the case of two-dimensionaln13n2 ~lateral! supercells
the above expressions remain formally the same, howe
each quantity has to be replaced by a supermatrix labele
the positions of the sites within a given supercell. In the c
of binary substitutional alloys the corresponding poten
functions are assumed to have only two different values
the two constituents involved, i.e., we neglect possible lo
environment effects and short-range order within a given
percell. It should be noted, however, that in principle f
each chosen supercell all inequivalent potential functi
ought to be determined self-consistently~see also Sec. III A!.

C. Magnetotransport

As is shown in the Appendix, the conductance per int
face atom can be expressed as

CM5(
s

C M
s , C M

s 5
e2

h

1

Ni
(
ki

TM
s ~ki ,EF!, ~8!

whereNi is the number ofki points in the SBZ,EF is the
Fermi energy,e is the electron charge,h is the Planck con-
stant ~the quantity 2e2/h is usually called the conductanc
quantum!, andM5FM ~AF! denotes the ferromagnetic~an-
tiferromagnetic! configuration of the magnetizations in th
magnetic slabs. Furthermore, the transmission coeffici
Ts(ki ,E) can be replaced by

Ts~ki ,E!5 lim
d→01

1

2
tr$B1

b,s~ki ,E!g1,N
b,s~ki ,z1!

3BN
b,s~ki ,E!gN,1

b,s~ki ,z2!1B1
b,s~ki ,E!

3g1,N
b,s~ki ,z2!BN

b,s~ki ,E!gN,1
b,s~ki ,z1!%,

~9!
y
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where tr denotes the trace over angular momenta and
per unit cell in a principal layer,

B1
s~ki ,E!5 i @G1

b,s~ki ,z1!2G1
b,s~ki ,z2!#,

BN
s~ki ,E!5 i @GN

b,s~ki ,z1!2GN
b,s~ki ,z2!#, ~10!

andz65E6 id. In this formulation we have assumed a co
linear spin structure, a generalization to noncollinear case
given in Sec. II D. The magnetoresistance ratio is then
fined as

GMR2RAF/RFM215CFM/CAF21 ,

CM5CM
↑ 1CM

↓ , ~11!

whereRM51/CM is the resistance per interface atom.
It should be noted that the total transmittance is the s

of the transmission coefficients corresponding to all chann
associated with a particularki. Therefore it may in general be
a number larger than 1. The total number of channels~propa-
gating and evanescent! is equal to the dimension of the ma
trices that enter Eq.~9!. The number of propagating channe
is ki dependent. Similarly, the total reflectance may in ge
eral be a number larger than 1 because the evanes
modes, which do not contribute to transport, formally app
here as channels with a reflection coefficient equal to 1.

In the ~supercell! ballistic transport the choice of layers
andN in Eq. ~9! is arbitrary. Consequently, one can identi
them by viewing the left~semi-infinite! system to consist of
the left lead andN21 layers in the active part of the system
i.e., by using a different partitioning of the inverse of th
Green’s function matrix in Eq.~6! ~see the Appendix!. This
formulation gives identical results but has computational
vantages and was therefore employed in numerical studie
the next section.

Until now we have assumed simple systems with o
atom att0 in the two-dimensional elementary cell with tran
lation vectorsa1 anda2. The corresponding basis vectors
the two-dimensional reciprocal space areb1 and b2. Multi-
layers with disorder in the active region can be represen
by finite supercells each containingn nonequivalent lattice
sites occupied randomly by various atomic species. Let
assume that the supercell translation vectors areA15n1a1
and A25n2a2 (n13n2 supercell,n5n1n2). The basis vec-
tors of the supercell reciprocal space areB15b1 /n1 andB2
5b2 /n2. The positions of atoms in the supercell aret i
5 i 1a11 i 2a21t0, where i 5( i 1 ,i 2), 0< i i<ni21. The
reciprocal-lattice vectors Qj5 j 1B11 j 2B2, where j
5( j 1 , j 2), map the original SBZ onto the supercell SB
~SCSBZ! in the sense that for eachkiPSBZ there exist just
one qiPSCSBZ and just oneQj (0< j i<ni21) such that
ki5qi1Qj .

A generalization to supercells is easily achieved by s
stituting corresponding matrices by supermatrices labeled
individual atoms within a supercell. One can express the
percell~SC! SGF therefore in terms of the SGF of the orig
nal lattice as follows:

G i ,i 8
sc

~qi ,z!5
1

n (
j 51

n

e2 iQj (ti2ti 8)G~qi1Qj ,z!, ~12!
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which significantly improves the efficiency of calculations

D. Generalization to the noncollinear case

Magnetotransport in systems with noncollinearly align
magnetizations of the magnetic slabs, e.g., the domain-
magnetoresistance, requires to view the potential functi
and the screened structure constants as 232 supermatrices
in spin space. A rotation of the spin orientation in one p
ticular layer p by an angleup is then assumed to be wit
respect to the spin orientation of the topmost right magn
layer of the active part of the system (u50). Quite clearly,
all translationally invariant atoms in a given plane of ato
have to have the same spin orientation.20 The potential func-
tion in the local~rotated! coordinate system is block diagon
in spin space,

Pp
b~z!5S Pp

b,↑~z! 0

0 Pp
b,↓~z!

D . ~13!

It can be expressed in the global coordinate system by
following similarity transformation

Pp
b~z,up!5U~up!Pp

b~z!U†~up! ~14!

using the unitary rotation matrices U(u ),

U~u !5S c s

2s cD , ~15!

where c5cos(u/2), s5sin(u/2). The structure constants i
the global coordinate system are block diagonal,

Spq
b ~ki!5S Spq

b,↑~ki! 0

0 Spq
b,↓~ki!

D , ~16!

andSpq
b,↑(ki)5Spq

b,↓(ki). The corresponding Green’s functio
can be now obtained using Eqs.~14! and ~16!.

III. RESULTS AND DISCUSSION

We have performed calculations for the followin
multilayer system:

Cu~001!
semi-infinite

left lead
I Mm

magmetic
slab

U Ss

spacerU Mm

magnetic
slab

I Cu~001!
semi-infinite

right lead
,

~17!

where the number of atomic layers in the active part of
system isN52m1s, and all calculations are based on a f
Co~001! parent lattice.

For Com /Cus /Com trilayers we have studied in the ballis
tic limit the dependence of the GMR on the thickness of
magnetic slabsm and the oscillatory behavior of the GMR
with respect to the spacer thicknesss. We then studied the
effect of repeating a magnetic multilayer system by cons
ering the case of Cu(001)/Co5Cu5Co5(Cu5Co5) r /Cu(001),
which for r 50 reduces to a simple trilayer. As an examp
for noncollinear arrangements, we assumed a model
transport through a domain wall by considering the syst
Co(001)/CoD /Co(001) with uL50, uR5p, and un
5(pn)/D, whereuL , uR , andun refer to the angles in Eq
ll
s

-

ic

s

e

e

e

-

or

~15! for the left semi-infinite system, the right semi-infinit
system, and thenth layer in the active part of the system
respectively, andD denotes the thickness of the domain w
in monolayers~ML’s !.

The combined effect of intrinsic and extrinsic defects w
be demonstrated for Co/Cu/Co-based trilayers, namely
~i! interdiffused interfaces;~ii ! a random spacer sandwiche
by ideal magnetic slabs, and~iii ! an ideal Cu spacer sand
wiched by alloyed magnetic slabs.

A. Numerical implementation

Layer-wise substitutional alloysA12xBx are simulated by
randomly occupying a chosen~in-plane! supercell withA
andB atoms, such that their ratio corresponds to the ove
concentrationx. The random configurations were generat
using the RM48 random number generator22 and the binary
correlation function was evaluated to test the ‘‘randomnes
of each generated configuration. We have used 535 and
737 supercells corresponding roughly to aA85B15 random
substitutional alloy, namely, 21A atoms and 4B atoms for
the 535 supercell, 41A atoms and 8B atoms for the 737
supercell. In all cases~typically an average over five configu
rations for a 535 supercell and an average over three co
figurations for a 737 supercell were calculated! the results
for the partial currents agreed within 1–3 % with each oth
the agreement being better for larger supercells.

In principle, one should use self-consistent potential
rameters corresponding to each configuration chosen
each size of supercell assumed. However, since such an
proach is numerically prohibitive we have used se
consistent CPA potential parameters determined for a gi
alloy composition12 also in the present supercell calculation
It should be noted that the same parameters were emplo
for various random configurations and different superc
sizes. We have thus neglected all possible fluctuations of
potential parameters due to a variation of the local envir
ment and assumed that the potential parameters take
two values, namely the same for anyA andB atom within a
supercell. For cases of a 232 supercell~simulatingA75B25

alloys! and a 333 supercell~simulatingA89B11 alloys! we
found that the fluctuations of the calculated potential para
eters forA andB atoms for different random configuration
from those obtained self-consistently using the CPA
quite small ~of the order of a few percent!. The potential
parameters were determined self-consistently for each
of interface occurring in the system. Furthermore, we ha
neglected the weak layer dependence of the potential pa
eters close to the interface and used their bulklike values

The ki integration covers 10 000 points in the full fc
~001! SBZ ~400 or 196 points in the corresponding 535 or
737 supercell SBZ!. In some cases, e.g., for the study of t
oscillatory behavior of the GMR as a function of the spac
thickness, a much higher number ofki points was used to
obtain well converged results. In all cases we have emplo
uIm z6u51027 Ry. It should be noted that for a 131 super-
cell one can integrate over the irreducible part of the S
while for random supercells theki integration has to be ex
tended to the full supercell SBZ.
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B. Ballistic transport

We shall start our discussion by a remark concern
some general features of the electronic structure of Cu ba
and of Co spin-up (↑) and Co spin-down (↓) bands at the
Fermi energy of Cu leads. It should be noted that
‘‘bands’’ we mean the bands of the three-dimensional p
odic bulk systems fcc Cu and fcc Co. Since the Cu and
Co↑ bands are very similar, they introduce only a very we
intrinsic scattering at the Cu/Co interface. Consequently,
transmission of↑ electrons for a ferromagnetic alignment
the magnetizations@and hence also the corresponding co
ductance, see Eq.~9!# through the Co/Cu interfaces is larg
As the large difference between the Cu and Co↓ bands can
be viewed as an effective potential barrier at the interface
↓ electrons, this in turn gives rise to much smaller FM↓ and
AF conductances. It should be noted that in here we st
only symmetrical trilayers implying identical values for th
spin-up and spin-down conductances in the AF configu
tion. Finally, partial conductances in the ballistic regim
namely spin-up and spin-down conductances for the FM
AF configurations are independent of the sample thickn
with exception of possible quantum-size oscillations~see be-
low!.

1. Dependence on the thickness of magnetic slabs

The dependence of the GMR of ideal Com /Cu5 /Com
trilayers on the thickness of the magnetic slabsm is pre-
sented in Fig. 1. The most remarkable feature is a str
suppression of the GMR@Fig. 1~a!# for small thicknesses an
a saturation at about 100% at large thicknesses. As ca
seen from the partial conductances shown in Fig. 1~b! the
oscillatory behavior of the magnetoresistance in Fig. 1~a! is
caused by the oscillatory behavior of the FM↓ and AF con-
ductances. Similar oscillations are also seen in the sim
case of a single Co slab of varying thickness embedded
the Cu host@empty symbols in Fig. 1~b!#. It should be noted
that the GMR of finite Co slabs never reaches the limit
semi-infinite Co slabs since the ballistic conductances of
leads in the case of finite Co slabs are different from thos
Co leads in the case of semi-infinite Co leads. The mentio
suppression of the GMR is quite likely due to an effecti
potential barrier in thed↓ channel because of the abov
mentioned large difference between the Cu- and Co↓ bands:
a narrower magnetic slab allows for a larger transmission
electrons in the FM↓ and both AF channels. Consequent
the total AF conductance increases faster than the total
conductance and hence the GMR ratio drops~see also Ref.
19!.

2. Dependence on the thickness of the spacer

The effect of quantum current oscillations was studied
Mathon17 using an empirical multiband TB model within
Kubo-Landauer-type approach by considering the dep
dence of the GMR on the thickness of the spacer. In Fig
we present such a study for Co5/Cus /Co5 trilayers with vary-
ing spacer thicknesss. We clearly observe pronounced GM
oscillations@Fig. 2~a!# around a value of about 115% whic
are damped with increasing spacer thickness. A clearer
ture is obtained by looking at the partial conductances. Fr
Fig. 2~b! it can be seen that the oscillatory behavior ori
g
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nates mostly from the FM↓ conductance whose amplitude
are much larger than those of the AF conductance, while
FM↑ conductance is essentially thickness independent.
observe oscillations with a period of about 5–6 ML’s for th
FM↓ and AF conductance and, in addition, some admixt
of short-period oscillations with a period of about 2.5 ML
is seen for the FM↓ conductance. These periods correla
reasonably well with similar values obtained for the inte
layer exchange coupling using the same electronic struc
model ~see, e.g., Ref. 23!. The amplitudes are roughly
damped ass21, wheres is the spacer thickness.17

3. CoÕCu multilayers

GMR measurements are usually performed for two diff
ent kinds of systems, namely~i! spin valves modeled in the
present paper by a trilayer and~ii ! repeated multilayers. Suc
a repeated multilayer is modeled in here by adding a fin
number of repetitions Cu5Co5Cu5Co5 to the reference trilayer
Co5Cu5Co5 ~either from the left or from the right! and then

FIG. 1. Ideal Com /Cu5 /Com trilayers sandwiched by semi
infinite Cu leads with varying thicknessm of the magnetic slabs:~a!
magnetoresistance ratio~diamonds! and the limit of semi-infinite
Co slabs~bullet!; ~b! conductances per atom for the ferromagnetic↑
spin ~up triangles!, ferromagnetic↓ spin ~down triangles!, and an-
tiferromagnetic configuration~diamonds!. Empty symbols~up and
down triangles! refer to the ferromagnetic↑ and ↓ spin conduc-
tances of a single Co slab of varying thickness embedded into a
host. For semi-infinite Co slabs the ferromagnetic↑ ~1!, ↓ (3),
and antiferromagnetic~bullet! conductances are shown, respe
tively.
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PRB 62 15 089AB INITIO THEORY OF PERPENDICULAR . . .
sandwiching the system by semi-infinite Cu leads. The c
sen spacer thickness of 5 Cu ML’s corresponds to the
exchange coupling regime in the trilayer Co5Cu5Co5 ~see
Ref. 23 for an evaluation of the interlayer exchange coupl
within the present model!. Figure 3 shows the GMR as
function of the number of repetitionsr ~each repetition
amounts to 20 atomic layers! wherebyr 50 corresponds to
the reference trilayer. We observe a rather rapid formatio
a saturation value~approximately twice as big as the valu
for a trilayer! within about five repetitions, the oscillation
about the saturation value being very small. These feat
are in a good agreement with those in Ref. 24. In particu
it is obvious from Fig. 3~b! that the increase of the GMR
with the number of repetitions can be related to a cor
sponding decrease in the AF conductance.

4. Domain-wall magnetoresistance

The problem of a domain-wall magnetoresistan
~DWMR! was addressed recently using model25,26 as well as
realistic27 calculations. As an illustration for perpendicul
electric transport in noncollinearly ordered structures in F
4 a first study of the DWMR for domain walls of varyin
thickness is shown. In this model calculations we sim
assume a linear variation of the layer-wise rotation an
un5(pn)/D within a domain wall of the thicknessD. As

FIG. 2. Ideal Co5 /Cus/Co5 trilayers sandwiched by semi-infinit
Cu leads with varying spacer thicknesss: ~a! magnetoresistance
ratio ~diamonds!; ~b! conductances per atom for the ferromagnetic↓
spin ~down triangles! and antiferromagnetic configuration~dia-
monds!. Note the reduced scale on the vertical axis compared
Fig. 1.
-
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can be seen from this figure a large DWMR is only obtain
for domain-wall thicknesses of atomic scale~so-called
constrictions26,28! while for thicker domain walls the DWMR
quickly drops to almost zero. By comparing these with t
ferromagnetic conductance, it is obvious from Fig. 4~b! that
the conductance is decreased by the presence of do
walls. Finally, we mention that the conductance varies
D21, i.e., the resistance varies approximately linearly w
the domain-wall thickness. All these results are in agreem
with the conclusions in Ref. 27. It should be noted, howev
that further studies are needed, in particular including
effect of impurities,25 but also considering more realisti
variations of the layer-wise rotation anglesun .

C. Combined ballistic and diffusive transport

In real systems, in addition to specular scattering at intr
sic defects~system interfaces! there is scattering at extrinsi
defects, namely at impurities, stacking faults, dislocatio
and there are even dynamical effects like scattering of e
trons with phonons or magnons. In here we consider o
substitutional impurities in the spacer, magnetic slabs, an
their interfaces in a reference system which consists of
and right semi-infinite Cu leads sandwiching two Co sla

to

FIG. 3. Co/Cu multilayer treated as an ideal trilay
Co5 /Cu5 /Co5(Cu5Co5Cu5Co5) r with r repetitions of the type
(Cu5Co5Cu5Co5) and sandwiched by semi-infinite Cu leads:~a!
magnetoresistance ratio~diamonds!; ~b! conductances per atom fo
the ferromagnetic↑ spin ~up triangles!, ferromagnetic↓ spin ~down
triangles!, and antiferromagnetic configuration~diamonds!. The val-
ues forr 50 correspond to the trilayer Co5 /Cu5 /Co5.
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15 090 PRB 62J. KUDRNOVSKÝ et al.
each 5 ML’s thick, and separated by a Cu spacer of vary
thickness~1–10 ML’s!. In general, disorder can cause t
following effects: ~i! an increase of the overall amount
scattering which in turn contributes to a reduction of t
transmission probability;~ii ! a violation of the strict conser
vation of theki vector belonging to the SBZ of leads ca
open new transmission channels which contribute to an
crease of the conductance;~iii ! interdiffusion smoothens the
potential barrier in the ideal trilayer which in turn also lea
to an increased transmission coefficient; and~iv! alloying in
the magnetic layers can increase~decrease! the effective bar-
rier for electrons at the Co/Cu interface and thus decre
~increase! the conductance in this channel. Therefore the
influence of disorder on the conductance results from a c
petition between all these effects and may lead to an incre
or decrease of the conductance, depending on the sy
under consideration~see also Ref. 29!.

1. Interface interdiffusion

The effect of disorder at the Co/Cu interfaces is shown
Fig. 5. The interdiffused interface extends over two neig
boring layers of compositions Co85Cu15 ~on the Co side! and
Co15Cu85 ~on the Cu side!. As can be seen the GMR de
creases monotonically with the number of disordered in

FIG. 4. A magnetic domain wall of varying thickness san
wiched by antiferromagnetically aligned semi-infinite Co leads. T
layer-wise magnetization rotation angle varies linearly with
domain-wall thickness between 0 andp: ~a! domain-wall magne-
toresistance ratio;~b! total conductances per atom for the ferroma
netic configuration~up triangles!, and for the domain wall~down
triangles!. Ferromagnetic configuration is infinite Co bulk.
g
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faces, and disorder suppresses the oscillations presen
ideal interfaces. Disorder influences the FM↑ conductance
very weakly because the Cu bands are similar in shape to
Co↑ bands. The AF conductance, however, is much lar
than the one for the ideal trilayer and origins of this effe
were discussed above@see points~ii ! and ~iii ! at the begin-
ning of Sec. III C#. Similar, but weaker effect, is observe
also for FM↓ conductance. It could be concluded therefo
that the decrease of the GMR is controlled by the increas
AF conductance due to the interface interdiffusion. It sho
be noted that partial conductances remain constant with
varying spacer thickness as the number of disordered la
does not change and possible quantum oscillations
damped by disorder.

2. Disorder in the spacer

The effect of alloying in the nonmagnetic spac
(Cu85Pd15 and Cu50Pd50) on the magnetoresistance is pr
sented in Fig. 6. We observe a monotonic decrease of

e

-

FIG. 5. Comparison of trilayers with 15%-interdiffused inte
faces with ideal Co5 /Cus /Co5 trilayers sandwiched by semi-infinite
Cu leads as a function of the spacer thicknesss: ~a! magnetoresis-
tance ratio~diamonds, ideal trilayer; up triangles~1!, one of the
inner interfaces is interdiffused; empty up triangles~2!, both inner
interfaces are interdiffused; down triangles~3!, two inner and one
of outer interfaces are interdiffused; empty down triangles~4!, all
four interfaces are interdiffused!; ~b! conductances per atom for th
ferromagnetic↑ spin ~up triangles!, ferromagnetic↓ spin ~down
triangles!, and antiferromagnetic configuration~diamonds!. Full
symbols refer to an ideal trilayer, empty symbols to a trilayer w
all interfaces interdiffused.
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PRB 62 15 091AB INITIO THEORY OF PERPENDICULAR . . .
GMR ratio as a function of the spacer thickness@Fig. 6~a!#.
The origin of this decrease can be traced from Fig. 6~b!. It
should be noted that in Cu-rich alloys the states at the Fe
energy are influenced only weakly by impurities.30 There-
fore, the FM↓ and AF conductances are only slightly smal
than those of an ideal trilayer. Consequently, the effect
extrinsic potential scattering for the FM↓ and AF conduc-
tance is rather small as compared to the strong intrinsic s
tering at the interfaces. On the other hand, the effect of
trinsic defects dominates the FM↑ conductance where
intrinsic scattering is negligibly small. In fact it is the FM↑
channel which is mostly responsible for the decrease of
GMR ratio with increasing spacer thickness. Essentially
ear decrease of the FM↑ conductance as a function of th
spacer thickness indicates the ohmic transport regime in
case which is easy to understand as the number of disord
layers increases with the spacer thickness in contrast to
previous case of interface interdiffusion. The above conc
sions remain qualitatively the same for a Cu50Pd50 case but
the effect of disorder is larger as compared to a Cu85Pd15
spacer.

FIG. 6. Comparison of Co5 /(Cu1002xPdx)s /Co5 trilayers (x
515 and 50! with ideal Co5 /Cus /Co5 trilayers sandwiched by
semi-infinite Cu leads as a function of the spacer thicknesss: ~a!
magnetoresistance ratio~diamonds, ideal trilayer; full triangles, al
loyed spacer withx515; empty triangles, alloyed spacer withx
550); ~b! conductances per atom for the ferromagnetic↑ spin ~up
triangles!, ferromagnetic↓ spin ~down triangles!, and antiferromag-
netic configuration~diamonds!. Full symbols refer to an idea
trilayer, empty symbols to a trilayer with an alloyed spacer cor
sponding tox515.
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3. Disorder in magnetic layers

The effect of alloying in the magnetic slabs on the ma
netoresistance is shown in Figs. 7 and 8. In these we h
considered two different situations, namely Co85Ni15 and
Co85Cr15 magnetic slabs. In the former case the local ma
netic moments of Co and Ni are oriented parallel while t
Co and Cr moments in Co85Cr15 are aligned antiparallel
Contrary to the case of disorder in the spacer in the Co85Ni15
case~Fig. 7! the GMR ratio quickly saturates at approx
mately half of the value for an ideal trilayer. The behavior
the partial conductances is similar to that for an interdiffus
interface. Due to the similarity of the Co↑ and the Ni↑ bands
at the Fermi energy the FM↑ conductance is nearly the sam
as for the ideal trilayer. Since the Co↓ bands are higher in
energy as compared to the Ni↓ bands, alloying of Co with Ni
decreases effectively the potential barrier height at the in
face resulting thus in a larger transmission coefficient~con-
ductance! as compared to the ideal trilayer. Consequen
the AF conductance of the alloyed magnetic layers is lar
than for an ideal trilayer. The same effect, but much weak
applies for the FM↓ conductance indicating dominating in
trinsic scattering at interfaces for this channel. The behav
of Co85Cr15 magnetic slabs is quite different~see Fig. 8!,

-

FIG. 7. Comparison of (Co85Ni15)5 /Cus /(Co85Ni15)5 trilayers
with ideal Co5 /Cus /Co5 trilayers sandwiched by semi-infinite C
leads as a function of the spacer thicknesss: ~a! magnetoresistance
ratio ~diamonds, ideal trilayer; triangles, alloyed magnetic slab!;
~b! conductances per atom for the ferromagnetic↑ spin ~up tri-
angles!, ferromagnetic↓ spin ~down triangles!, and antiferromag-
netic configuration~diamonds!. Full symbols refer to an idea
trilayer, empty symbols to a trilayer with alloyed magnetic layer
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15 092 PRB 62J. KUDRNOVSKÝ et al.
because due to the antiparallel orientation of moments for
and Cr sites, even the FM↑ conductance is influenced b
disorder. In fact, in all channels the conductance is now
proximately the same, causing the GMR ratio to be stron
suppressed.

IV. CONCLUSIONS

We have presented a systematicab initio study of the
influence of alloying in the spacer, magnetic layers, and
interfaces on the CPP transport in magnetic multilayers.
electronic structure is described by the TB-LMTO meth
while a Landauer-Bu¨ttiker-type approach formulated withi
the framework of surface Green’s functions is used to eva
ate transport properties. A generalization to noncollin
magnetic configurations, as would apply for a description
domain walls, was also studied.

We have considered a variety of magnetic multilay
based on the reference Co/Cu/Co~001! trilayer system which
exhibit various kinds of transport ranging from the ballis
regime to the diffusive regime. The results of the numeri
calculations were discussed in terms of partial conductan
of the↑ and↓ channels in the FM and the AF alignment.

FIG. 8. Comparison of (Co85Cr15)5 /Cus /(Co85Cr15)5 trilayers
with ideal Co5 /Cus /Co5 trilayers sandwiched by semi-infinite C
leads as a function of the spacer thicknesss: ~a! magnetoresistance
ratio ~diamonds, ideal trilayer; triangles, alloyed magnetic slab!;
~b! conductances per atom for the ferromagnetic↑ spin ~up tri-
angles!, ferromagnetic↓ spin ~down triangles!, and antiferromag-
netic configuration~diamonds!. Full symbols refer to an idea
trilayer, empty symbols to a trilayer with alloyed magnetic laye
o

-
ly

t
e

-
r
f

s

l
es

general, the GMR ratio decreases with introducing impurit
in different parts of the sample while the partial condu
tances may both increase or decrease due to disorder in
ered systems. The present results seem to be valid for qu
few magnetic multilayer systems since the scattering at
magnetic/nonmagnetic interface in one spin channel can
nificantly be larger than in the other channel~similarly as for
the Co/Cu interface studied here!. We also discussed the e
fect of quantum oscillations of the magnetocurrent and q
siperiodicity in repeated multilayers. Extensive numeric
tests seem to indicate that already 535 supercells containing
25 atoms averaged over a limited number of random c
figurations~typically a configurational average over five di
ferent configurations was employed! give representative re
sults for the CPP magnetoresistance. The present appr
can also be generalized to the case of transport acro
barrier of a different kind such as in semiconductor
transition-metal oxide tunneling junctions.
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APPENDIX: CONDUCTANCE

The orthogonal Hamiltonian given in Eq.~1! yields an
accurate description of the electronic structure for m
close-packed transition-metal systems but it is not sh
ranged. For a physically more transparent derivation of e
tric transport properties a less accurate~first-order! but short-
ranged Hamiltonian,12,31 defined as

HRL,R8L8
b,s

5CRL
b,sdRR8dLL81~DRL

b,s!1/2SRL,R8L8
b

~DR8L8
b,s

!1/2,
~A1!

represents a much better starting point. This Hamiltonian
fers to the following approximation for the screened pote
tial functions

P̃RL
b,s~z!5

z2CRL
b,s

DRL
b,s

, ~A2!

where at a particular energyE, namely, at the Fermi energ
EF of the system, the potential parametersCRL

b,s and DRL
b,s

have to fulfill the following conditions@cf. Eqs. ~3! and
~A2!#:

P̃RL
b,s~EF!5PRL

b,s~EF!,
dP̃RL

b,s~z!

dz
U

z5EF

5
dPRL

b,s~z!

dz
U

z5EF

.

~A3!
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The matrix elements of the operator of thez coordinate can
be approximated within the TB-LMTO formalism as

ZRL,R8L85dRL,R8L8zR , ~A4!

wherezR denotes thez coordinate of the center of theRth
Wigner-Seitz sphere. This approximation was used in pre
ous TB-LMTO studies of electron transport32,33 and its more
detailed discussion will be given elsewhere.34

The short-ranged Hamiltonian given in Eq.~A1! can be
written as a sum overki vectors. Let us consider the Hami
ton operator of a quasi-one-dimensional system for a part
lar ki vector ~variableki is omitted here!,

Ĥ5(
p

@Ĥp,p1Ĥp,p111Ĥp,p21#, ~A5!

with interactions only between the neighboring principal la
ers p and whose blocks are given byĤp,q5PpĤp,qPq

5PpĤPq , wherePp is a projector onto the layerp.
The operatorẐ of the coordinate perpendicular to th

atomic planes and the operatorv̂ of the corresponding veloc
ity are then given by

Ẑ5d(
p

pPp , v̂5
1

i\
@ Ẑ,Ĥ#5

d

i\ (
p

@Ĥp11,p2Ĥp,p11#,

~A6!

whered is the interlayer distance.
The operatorĴ of the electric current perpendicular to th

atomic layers can then be written as a sum of currentsĴp,p11
between layersp andp11

Ĵ5
1

M (
p

Ĵp,p11 , Ĵp,p115
e

i\
@Ĥp11,p2Ĥp,p11#,

~A7!

whereM is the number of layers which, in principle, has
be taken to infinity. Note that the interlayer distanced dis-
appears due to the normalization.

In the linear response regime the conductance for a
ticular channel (ki ,s) at an energyE can be expressed as

C~E!5p\(
a,b

u^auĴub&u2d~E2Ea!d~E2Eb! ~A8!

5
p\

M2 (
a,b

(
p,q

^auĴp,p11ub&^buĴq,q11ua&d~E2Ea!

3d~E2Eb!. ~A9!

In Eq. ~A8! ua& andub& are~orthonormalized! eigenstates of
the HamiltonianĤ, Eq. ~A5!. The double sum over the laye
indicesp andq in Eq. ~A9! can be eliminated due to curren
conservation.35 The layer indicesp andq may then be chosen
arbitrarily which yields

C~E!5p\(
a,b

^auĴp,p11ub&^buĴq,q11ua&

3d~E2Ea!d~E2Eb!. ~A10!
i-

u-

-

r-

The d functions in Eq.~A10! can be expressed in terms o
the resolventĜ(z)5@z2Ĥ#21 of the HamiltonianĤ as

(
a

ua&d~E2Ea!^au5
1

2p i
@Ĝ~E2 i0!2Ĝ~E1 i0!#,

~A11!

such that

C~E!5
e2

2h
Tr$~Ĥp11,p2Ĥp,p11!@Ĝ~E2 i0!2Ĝ~E1 i0!#

3~Ĥq11,q2Ĥq,q11!@Ĝ~E2 i0!2Ĝ~E1 i0!#%,

~A12!

where Tr denotes the trace over all lattice sites and ang
momenta including the spin.

The total conductance per two-dimensional element
cell is then given by the Kubo-Greenwood formula as

C5
e2

h (
s

1

Ni
(
ki

E dE@2 f 8~E!#Ts~ki ,E!, ~A13!

where f (E) is the Fermi-Dirac function. AtT50 the inte-
gration is trivial and all the quantities need to be evalua
only at the Fermi energyEF . The transmission probability
Ts(ki ,E) for the channel (ki ,s) at energyE reduces there-
fore to

Ts~ki ;E!5
1

2 (
m,n

~21!m1n tr$Hp,p11
s ~ki!Gp11,q

s ~ki ,zm!

3Hq,q11
s ~ki!Gq11,p

s ~ki ,zn!1Hp11,p
s ~ki!

3Gp,q11
s ~ki ,zm!Hq11,q

s ~ki!Gq,p11
s ~ki ,zn!

2Hp,p11
s ~ki!Gp11,q11

s ~ki ,zm!Hq11,q
s ~ki!

3Gq,p
s ~ki ,zn!2Hp11,p

s ~ki!Gp,q
s ~ki ,zm!

3Hq,q11
s ~ki!Gq11,p11

s ~ki ,zn!%. ~A14!

Here the indicesm,n51,2 are chosen such thatzm5E1 id if
m51, zm5E2 id if m52, whered is a small positive con-
stant, and similar relations apply forzn . All quantities in Eq.
~A14! are matrices with respect to angular momentum in
cesL,L8 and tr denotes the trace over angular momenta.
this stage, by settingp5q50 one can directly retrieve the
expression for conductance given by Mathonet al.17

Within the LMTO formalism by using Eqs.~4!, ~A1!, and
~A2!, and omitting for matters of simplicity the variableki
and the superscriptb, we obtain

Ts~E!5
1

2 (
m,n

~21!m1n tr$S0,1gp11,q
s ~zm!S0,1gq11,p

s ~zn!

1S1,0gp,q11
s ~zm!S1,0gq,p11

s ~zn!

2S0,1gp11,q11
s ~zm!S1,0gq,p

s ~zn!

2S1,0gp,q
s ~zm!S0,1gq11,p11

s ~zn!%. ~A15!

This expression is a formal modification of Eq.~A14!,
namely the screened structure constantsS and the auxiliary
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Green’s functiong(z) substitute the HamiltonianH and its
resolventG(z). It should be noted that the derivation of E
~A15! was based on the first-order Hamiltonian, Eq.~A1!,
but as can be shown34 it is valid also for the orthogona
LMTO Hamiltonian, Eq.~1!. Furthermore, the expression
Eq. ~A15! is invariant with respect to the LMTO represent
tion, i.e., one can use also the most localized representa
b12 for transport problems.

The expression in Eq.~A15! can further be simplified by
using surface Green’s functions of the left@GL

s(z)# and right
@GR

s (z)# lead. We first setp50, q5N and insert the identi-
ties given below into Eq.~A15!:

gN11,0
s ~zn!5GR

s ~zn!S1,0gN,1
s ~zn!S1,0GL

s~zn!,

g0,N11
s ~zm!5GL

s~zm!S0,1g1,N
s ~zm!S0,1GR

s ~zm!,

g1,N11
s ~zm!5g1,N

s ~zm!S0,1GR
s ~zm!,

gN,0
s ~zn!5gN,1

s ~zn!S1,0GL
s~zn!,

g0,N
s ~zm!5GL

s~zm!S0,1g1,N
s ~zm!,

gN11,1
s ~zn!5GR

s ~zn!S1,0gN,1
s ~zn!, ~A16!

which easily can be proved using the partitioning techniq
~see, e.g., Refs. 21 and 36!. Thus we obtain

Ts~E!5
1

2 (
m,n

~21!m1n tr$S0,1g1,N
s ~zm!S0,1GR

s ~zn!

3S1,0gN,1
s ~zn!S1,0GL

s~zn!1S1,0GL
s~zm!S0,1g1,N

s ~zm!

3S0,1GR
s ~zm!S1,0gN,1

s ~zn!2S0,1g1,N
s ~zm!S0,1GR

s ~zm!

3S1,0gN,1
s ~zn!S1,0GL

s~zn!2S1,0GL
s~zm!S0,1g1,N

s ~zm!

3S0,1GR
s ~zn!S1,0gN,1

s ~zn!%. ~A17!

Using the cyclic invariance of the trace yields
.
la

A

s.

tt

.

B

on

e

Ts~E!5
1

2 (
m,n

~21!m1n tr$S1,0@GL
s~zm!

2GL
s~zn!#S0,1g1,N

s ~zm!S0,1@GR
s ~zm!

2GR
s ~zn!#S1,0gN,1

s ~zn!%, ~A18!

which is already equivalent to Eq.~9! because the termsm
5n are zero and only termsmÞn contribute.

The transmission coefficient consists of two terms

Ts~ki ,E!5
1

2
@T1

s~ki ,E!1T2
s~ki ,E!#, ~A19!

T1
s~ki ,E!5 lim

d→01

Tr$B1
b,s~ki ,E!g1,N

b,s~ki ,z1!

3BN
b,s~ki ,E!gN,1

b,s~ki ,z2!%, ~A20!

T2
s~ki ,E!5 lim

d→01

Tr$B1
b,s~ki ,E!g1,N

b,s~ki ,z2!

3BN
b,s~ki ,E!gN,1

b,s~ki ,z1!%, ~A21!

related by the identity

T1
s~ki ,E!5T2

s~2ki ,E!. ~A22!

Consequently,Ts(2ki ,E)5Ts(ki ,E), and therefore

(
ki

SBZ

Ts~ki ,E!5(
ki

SBZ

T1
s~ki ,E!5(

ki

SBZ

T2
s~ki ,E!

52(
ki

V

Ts~ki ,E!. ~A23!

The last sum is confined to one-half of the surface Brillou
zone V (SBZ5Vø ÎV, where Î is the operator of spatia
inversion!. By using Eq.~A23! one can speed up the calcu
lation of conductance.
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