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Abstract. On the basis of formal analysis and the perturbation many-body theory we point
out the conditions under which short and long-range electronic correlations in condensed matter
can be mapped by means of two-particle coincidence spectroscopy. For particle-impact induced
electron emission we show that the coincidence intensity integrated over the slow ejected electron
is related to the density-density time correlation function. In the case of a fast incoming and
outgoing projectile and a slow emitted electron we relate the intensity to the two-particle and
higher order correlations. Effects of two-particle correlations on the two-particle spectral density
are investigated by means of the dynamical mean field theory (DMFT) applied to the Hubbard
model.

1. Introduction
Under certain conditions the intensity for the simultaneous detection of two high-energy electrons
upon the impact of a fast electron can be related to the single-particle spectral density in matter,
a fact that has been exploited experimentally to a wide range of materials ([1, 2, 3, 4, 5] and
references therein). The general approach as such is known as the (e, 2e) spectroscopy (one
electron in, two electrons out) and is being extensively studied in two modes the transmission
[2] and the reflection mode [6, 7]. In the transmission mode an energetic electron beam traverses
a free-standing thin film ejecting one electron from the valence-band. The two electrons are
detected in the forward direction (with respect to the incoming beam) and the scattering
event is justifiably viewed as a direct knock-out of the bound electron. The (e,2e) is then
related to the single-particle spectral density. The low-energy counterpart of these high energy
experiments is performed in the reflection mode and has been as well studied both theoretically
and experimentally [6, 7, 8, 9, 12, 13, 14]. A variety of materials have been investigated, e.g.
insulators [6, 15, 16], clean metals [8, 9, 2, 15], ferromagnets [17] and alloys [18].

The aim of this contribution is to inspect the geometry in which a fast electron losses a small
amount of energy and momentum which are still sufficient for the emission of one slow electron
from the sample. As shown below depending on the measured cross section one can relate the
measured intensity to the density-density correlation function or to the properties of the two-
particle spectral function [19]. For the calculations of the latter we start from the Hubbard model
and employ the dynamical mean field theory [20, 21]. Calculations of the two-particle spectral
function based on the results of quantum Monte-Carlo method [22] for single particle spectral
function show that the basic structure is dictated by the local (Hubbard) Coulomb correlation
whereas the strength of the peaks in the two-particle spectral functions are determined by the
direct two-particle correlations.
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2. Low-energy electron emission
We consider the inelastic scattering of incoming electrons with energy ≈ 100eV from a
paramagnetic sample. The energy and momentum transfer ωq and q to the electronic system is
sufficient for the emission of only a slow electron (with few eVs). The (e, 2e) intensity can be
expressed in a golden-rule type form as [8, 9, 23] (we operate in units in which h̄ = 1)

dσ

dΩqdωqdΩkf
dωf

= c′
∑

ᾱi,ᾱf

pi

∣∣〈k′f |W |k, i〉∣∣2 δ(ωq − ωf + ωi) (1)

≈ c
∑

ᾱi,ᾱf

pi |〈f |W (q)|i〉|2 δ(ωq − ωf + ωi). (2)

Here c′ (and c) is a kinematical factor that depends on the flux normalization, Ωq (Ωf ) is the solid
angle characterizing the direction of the momentum transfer (the slow ejected electron), ωf is the
energy of the slow emitted electron. The wave vectors of the incoming and scattered electrons
are k and k′. |i〉 and |f〉 stand for the state vectors of the initial and the final states characterized
respectively by a collective set of quantum numbers αi and αf and the sum runs over those which
are not detected (ᾱi, ᾱf ). pi is the statistical weight of the initial state (in the thermodynamic
equilibrium pi = eβ(ωi−µ) where β is the inverse temperature and µ is the chemical potential).
The interaction W of the electron with the target is mediated by an operator that couples to
the charge density and W (q) is its Fourier transform over the space of the projectile. Let us
inspect the case where the slow electron is not detected or integrated over and (as in most cases)
the initial state is not specified. The intensity is then (note δ(ω) = 1

2π

∫∞
−∞ dteiωt)

dσ

dΩqdωq
= c

∑
αi,αf

pi〈i|W †(q)|f〉〈f |W (q)|i〉δ(ωq − ωf + ωi) (3)

=
c′

2π

∫ ∞

−∞
dt eiωqt

∑
αi

pi〈i|eiHtW †(q)e−iHtW (q)|i〉 (4)

=
c′

2π

∫ ∞

−∞
dt eiωqt 〈W †(q, t)W (q, 0)〉 . (5)

From this relation we see that the (e, 2e) intensity is solely determined by the ground-state
average of a time correlation of the operator W (q, t). This results is due to the choice of the
experimental conditions, i.e. very asymmetric energies of the electrons. For illustration we note
that W we may be written as W (r) = − ∫ ρ(r′)

|r−r′|d
3r′, where ρ(r′) is the charge density. Therefore,

eq.(5) reads in this particular case

dσ

dΩqdωq
∝ ṽ(q)

∫ ∞

−∞
dt eiωqt 〈ρ(−q, t)ρ(q, 0)〉 . (6)

where ṽ(q) ∝ 1/q2 is the Fourier transform of the bare interaction and for the Fourier com-
ponents of the charge density we used the relation ρ†(q, t) = ρ(−q, t). The density-density
time correlation function 〈ρ†(q, t)ρ(q, 0)〉 is derived from a two-particle Green’s function G(2)

[19] (specifically from the polarization propagator). Under certain conditions specified in [19]
one may employ the lowest order of the many-body perturbation expansion of G(2), the so-
called random-phase approximation (RPA). Such an approach has recently been implemented
numerically for (e,2e) from clusters and surfaces [24, 25]. An efficient scheme to evaluate G(2)

is the topic of current intense research because of its ubiquitous importance for the optical, the
electronic and the transport properties of materials. Recently we developed a general method
based on the configuration interaction scheme for the calculation of G(2). The results are highly
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accurate, however the system size is still limited by computational resources to few hundred
atoms [26]. An implementation for (e,2e) reactions is in progress.

From equation (5) we can also infer that the total integrated intensity σ =
∫ dσ

dΩqdωq
dΩqdωq is

dictated by charge-density fluctuations. This statement relies on the structure of the scattering
amplitude: While events with large momentum transfer also contribute to the integrated
intensity (invalidating thus the relation (5)) the major contributions stem from events with
small momentum transfer (note that ṽ(q) ∝ 1/q2), even in the presence of screening (due to the
q-dependence of the charge density fluctuations). This has also been observed experimentally
[7, 14, 15]. Based on this observation we calculated σ for metallic clusters and fullerene starting
from eq.(5) and within the RPA approximation for G(2). Comparison with experiments and with
calculations neglecting charge density fluctuations confirmed the decisive role of the collective
excitations on the ionisation channel even in these confined systems.

3. The two-particle Green’s function
From the preceding arguments we see that the integrated (e, 2e) intensities contain information
exclusively related to the sample properties and yield some insight into the influence of the
collective modes on single (quasi) particle excitations. For extended systems similar information
can be obtained from electron-energy loss spectroscopy [27]. Using spin-polarized electrons [17]
allows the investigation of the time-correlation function of the spin density, i.e. the magnetic
susceptibility. The fully resolved cross section (2) reveals yet more details on the two-particle
(and higher) correlations, not obtainable by single particle spectroscopy, as readily deduced
from the relation of the two-particle (screened) interaction W (q) that enters (2) (v is the bare
interaction [19, 26]):

W = v + vG(2)v, (7)

meaning that

dσ

dΩqdωqdΩkf
dωf

= c
∑

ᾱi,ᾱf

pi |〈f |v(q)|i〉|2 δ(ωq − ωf + ωi)

+c
∑

ᾱi,ᾱf

pi

(∣∣∣〈f |(vG(2)v)(q)|i〉
∣∣∣
2
+ I

)
δ(ωq − ωf + ωi), (8)

where I is an interference term. The relation (7) is converted into an algebraic equation for W
by employing Πf . The latter is constructed as a product of two dressed single particle Green’s
functions

W = v + vΠfW. (9)

At high densities and in the static, long-wave length limit (Thomas-Fermi limit) this integral
equation is solvable and one finds out the spatial dependence to be WTF (rij) = e−rij/λTF

rij
where

λTF is the screening length (in metals it is on the order of few times the lattice constant).
These considerations show that W is short ranged (the case of Coulomb potential and several
interesting condensed-matter systems (Wigner crystals, Luttinger liquids ...) are important
exemptions). From eqs.(7,9) it follows that vG(2)v = vΠfW . The key point now is that the first
term in eq.(8) is related to the single particle spectral density of the target A(q− kf , ωq−ωf ) [2]
and contains no dynamical dependence on the scattering process (in a one-particle formulation it
is the initial-state probability density in momentum-space). Hence this part can be measured or
calculated separately and subtracted from the right-hand side of eq.(8). The resulting quantity
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we call d̄σ
dΩqdωqdΩkf

dωf
, meaning that under the conditions specified above the relation

d̄σ

dΩqdωqdΩkf
dωf

= c
∑

ᾱi,ᾱf

pi

(∣∣∣〈f |(vG(2)v)(q)|i〉
∣∣∣
2
+ I

)
δ(ωq − ωf + ωi) (10)

applies. Its structure becomes transparent if we adopt a single particle formulation, i.e. if we
start from a Bloch initial state ϕk(r) = uk(r)eik.r with a Bloch wave vector k and a Bloch
amplitude uk. Expanding this state over the reciprocal space with a reciprocal lattice vector G
and expansion coefficients cG we find

uk(r) =
∑

G

cG (k) eiG.r, ϕk(q− k′) =
∑

G

cG δG+k,q−k′ .

It is straightforward to show that the interference term I is proportional to ϕk(q− k′), meaning
that it is finite only at certain localized regions in momentum space; away from which we access

directly
∣∣∣〈f |(vG(2)v)(q)|i〉

∣∣∣
2

at the energy ωq − ωf .

4. Model calculations for the two-particle Green’s function
The central quantity entering equation (10) is G(2). If two electrons are emitted upon a photon
absorption the intensity is also related to the two-particle spectral density obtainable from the
imaginary part of G(2). Calculations of G(2) are much more involved than those for the single
particle Green’s function. They are mostly done on the level of model systems. In the framework
of a single-band Hubbard model, exact results is obtained for the completely filled band. For
arbitrary fillings a number of approximations exist that are based either on the equation of
motion approach or on the ladder approximation. e.g., Drchal used the equation of motion to
calculate the two-particle spectral density of the valence bands [29]. The single-particle aspects
entering in this method are however roughly approximated. Further schemes based on the two
particle ladder approximation [30, 31, 32] employ various forms of the single particle Green’s
function. Treglia et al. [31] calculated the one-particle spectrum by employing an (approximate)
second order perturbation. Drchal and Kudrnovsky [30] presented a self consistent T-matrix
approximation valid for low electron-occupancy only. Seibold et al. [33] proposed an approach
based on the time-dependent Gutzwiller approximation [34] to calculate the electron-pairing. A
common feature of most previous works on the two-particle Green’s function is that the single
particle parts are treated on a low level of accuracy leading to ambiguity in the interpretation
of the results.

In the present work, we start from an accurate description of the single particle aspects
accounting fully for electronic correlation (as they enter the Hubbard model) allowing to access
the crossover regime from weak to strong coupling. Then the ladder approach for two particle
properties is utilized.

4.1. The model Hamiltonian
The single-band Hubbard Hamiltonian reads in standard notation

H =
∑

ijσ

tijc
†
iσcjσ + U

∑

i

ni↑ni↓ − µ
∑

i

(ni↑ + ni↓) (11)

where t, U and µ describe the hopping amplitude, the repulsive on-site Coulomb interaction,
and the chemical potential, respectively. The electron interactions influence the single and
the two particle properties. On the single particle level electronic correlations are subsumed
in a renormalization of the single particle properties, and hence we call this type of effect
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indirect correlation whereas, due to the two-particle nature of the Coulomb interaction the two
particle or the pair of electrons is directly affected by the Coulomb interaction (and hence we
call these type of correlation direct correlations). Of course, higher order correlations results
in a renormalization of the two-particle features derived with two-particle correlations only.
Advances in the theoretical treatments of correlations have been made by inspecting the limit
of infinite connectivity d → ∞ in the Hubbard model [20]. Numerical implementation is
accessible upon a mapping of the original problems into the impurity Hamiltonian with an
additional self consistency relations [21]. In this approximation known as Dynamical mean
field theory (DMFT), local correlation is treated in the mean field level while maintaining
temporal fluctuations. The great allure of DMFT lies on its flexibility to be adapted to different
systems as long as one can determine the appropriate impurity Hamiltonian of the original
problems. Solution of the impurity problems is, however, non-trivial and the most demanding
task in the DMFT approach except for some extreme cases or particular Hamiltonian [28].
In this work, DMFT is combined with quantum monte carlo (QMC) [22] to solve Anderson
impurity-Hamiltonian applied in the Bethe lattice. The free density of states is given by
D(ε) = 1

2πt2

√
4t2 − ε2. The half bandwidth D ≡ 2t is taken as the energy unit and we focus on

the paramagnetic phase. The finite-temperature two-particle Green’s function is given as [32]

G(2)(q, ω) =
∫
〈Tτ ck,σ(τ)cq−k,−σ(τ)c†q−p,σ(0)c†p,−σ(0)〉 (12)

with
∫

is a short notation for −∑
k,σ

∫ β
0 dτeiωτ and ω = 2nπ/β is the Matsubara frequency.

Performing standard S matrix procedure [19] one obtains a set of Feynman diagrams for the two
particle Green function. The summation to all orders of the diagrams that represent a direct
interaction between single particle dressed Green’s function leads to

G(2)(q, ω) = − 1
β

∑

kiν

G(k, iν)G(q− k, iω − iν)Γkq(iω) (13)

with
Γkq(iω) = 1 +

1
β

∑

piν′
G(p, iν ′)G(q− p, iω − iν ′)Γpq(iν′) (14)

as the vertex part of particle-particle diagram. Equation (14) can be simplified by exploiting
the local nature Coulomb correlation (in the sense of Hubbard) to the form

G(2)(q, ω) =
Λq(iω)

1− UdΛq(iω)
. (15)

Ud denotes the matrix elements connected with the direct Coulomb interaction of the two
particles and

Λq(iω) = − 1
β

∑

p,iν

G(p, iν)G(q− p, iω − iν) (16)

is the particle-particle (polarization) Green’s function. By using standard analytical continuation
and evaluating the imaginary part of the two particle Green’s function one arrives at an
expression for the two particle spectral function A(2)(ω). It can be compared with one-photon
two-electron emission as follows

A(2)(ω) =
C(ω)

1− UdC(ω)
, (17)
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Figure 1. (a)Spectral function of single-particle Hubbard model in the half filled regime (n = 1)
for various strengths of Coulomb-interaction. Two particle spectral function for U = 2.5 (b)
and U = 3 (c) for various strengths of direct-Coulomb interaction.

where

C(ω) =
∫ ∞

−∞
dν

∫ ∞

−∞
dεf(ν)[A(ε, ν + ω)A(ε, ν)

+ A(−ε, ν − ω)A(−ε, ν)], (18)

with f(ν) is the Fermi function and A(ε, ν) is the single particle spectral function. These results
are valid for q = 0.

4.2. Results and discussion
As a pilot calculations we present the spectral function of the single-particle Hubbard model
for half filling (n = 1) in Fig.1a. As established [28], the finite temperature spectral-function
of the Hubbard model in the half filling regime possesses three peaks for moderate Coulomb
interactions: two peaks associated with two Hubbard-bands and a quasi-particle peak. The
quasi-particle peak gradually disappears with increasing the Coulomb interaction marking the
onset of the transition from the metallic to the insulating phase.

The two particle spectral-function can be calculated directly via Equation (17) and Equation
(18). As seen from Fig. 1(b,c) the basic structure of the two-particle spectral function is set by
the underlying form of the single particle spectral function which in turn depend decisively on
U as demonstrated in Fig. 1a. The strength of the peaks in A(2) are strongly dependent on the
direct electronic correlations expressed by Ud.

5. SUMMARY
As a summary, we discussed possible information extractable from coincident two electron
emission from condensed matter in the case of large energy asymmetry of two outgoing electrons.
Depending on the experimental situation one can access information inherent to the two-
particle spectral function. For the calculations of this quantity we used the Hubbard model
solved numerically using the dynamical mean-field theory within a quantum Monte Carlo
implementations. Some pilot results for the two-particle spectral functions are presented and
discussed.
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