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Abstract
We report on detailed first-principles calculations which focus on the magnetic and structural
properties of the (0001) surface of gadolinium. The electronic correlation within the localized
4f states is treated within the self-interaction correction (SIC), thus going beyond the local
spin-density approximation. The ferromagnetic ground state is predicted correctly if the SIC is
applied; the effect of surface relaxations on Heisenberg exchange parameters and on the Curie
temperature are addressed by Monte Carlo calculations. The SIC also has a profound effect on
the dispersion of the d surface states, due to hybridization of the 4f states with the 5d valence
states. The best agreement with photoemission experiments is obtained within the transition
state approximation, which takes into account the orbital relaxation. The Rashba spin–orbit
coupling in the d surface states is fully captured by our relativistic multiple scattering approach.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Density functional theory (DFT) is the most widely used
method for electronic structure calculations. Despite the
success of the local spin-density approximation (LSD) to DFT,
there are serious shortcomings: the properties of 3d metal
oxides are described badly, the band gaps of semiconductors
are underestimated, in f -systems the density of states is in
strong disagreement with experiment, in some cases the LSD
gives qualitatively wrong results for Mott–Hubbard insulators,
to name a few. Some of the discrepancies are due to the
restriction of DFT to describe the ground state properties, but
some failures can be attributed to the partial cancellation of
the spurious self-interaction of an electron with itself, which
is present in the Kohn–Sham (KS) effective potential. This
kind of systematic error can be corrected by removing the self-
interaction from the total energy functional [1]. Application of
the self-interaction correction (SIC) to transition metal oxides
(TMOs) [2] and wide-gap semiconductors [3], for example,
shows promising results. Another method to study TMOs
and semiconductors is LDA + U [4], which adds an on-site
Coulomb interaction to the LSDA functional [5]. LDA+U was
used to study other systems with localized electrons such as

gadolinium [6]. However, in this method the on-site Coulomb
interaction U is an adjustable parameter and is chosen to
optimize agreement with experiment.

Gd is a prototype for investigation of the electron
correlation. Correct treatment of the strongly localized
4f states changes the ground state magnetic ordering from
antiferromagnetic to ferromagnetic. Other properties of Gd
also improve when the electron correlation is taken into
account. The surface states of Gd(0001), which are mostly
dz2 majority states, hybridize with the localized 4f majority
states. As we will see later the SIC of the localized states has a
significant effect on the surface states and is essential. So far,
to our knowledge, all studies on Gd bulk and Gd(0001) have
been done by means of LDA + U or a 4f-core model [6–8]. In
this paper we report the results of an ab initio investigation of
the SIC in the bulk and on the (0001) surface of Gd.

Applying the SIC to calculate the ground state properties
of Gd, e.g. magnetic ordering and local magnetic moments,
is very successful. For excited states, it appears that the
binding energies of the SI-corrected localized levels are
significantly too large when compared to those determined
from spectroscopical data, i.e. from photoemission intensities.
This ‘overcorrection’ of the SIC is attributed to the orbital
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relaxation. SIC calculations are ground state calculations and
one cannot expect accurate results for excited states. In our
calculations we used the transition state approximation (TSA),
that is an average of two ground state potentials (LSD and SIC
potentials), to obtain a better agreement with experiments that
are associated with the excited states.

The paper is organized as follows: in section 2 local SIC
and TSA are explained in detail. Section 3 is devoted to the
calculated magnetic properties of Gd bulk and Gd(0001). The
surface states and the effect of the Rashba splitting on the
surface states are also studied. The paper ends with a summary
in section 4.

2. Computational aspects

First-principles calculations were performed within the
framework of multiple scattering theory, using scalar-
relativistic and relativistic Korringa–Kohn–Rostoker (KKR)
computer codes. The self-consistent KKR scheme allows us
to treat semi-infinite systems. Consequently, the entire system
comprises the Gd bulk, the surface region (six Gd layers and
four vacuum layers), and the vacuum region. The image
potential barrier is mimicked by so-called empty spheres.

Spin–orbit coupling is included by solving the Dirac
equation in our relativistic layer KKR code. The layer- and
wavevector-resolved spectral density

Nal (E, �k‖) = − 1

π
Im Tr G+

al,al(E, �k‖) (1)

provides detailed information on the electronic structure. Here,
G+(E, �k‖) is the side limit of the site-diagonal Green function
at energy E and in-plane wavevector �k‖. The trace is over the
muffin-tin sphere of site a in layer l. The spectral density can
be decomposed with respect to spin and angular momentum, to
give access to the relevant properties.

All calculations are performed with the experimental
structural parameters of a = 6.866 bohr and c/a = 1.59 [9].
The interlayer distance at the surface is reduced with respect
to the bulk, as has been determined experimentally [10]. A
surface relaxation of 4% contraction is taken into account.

2.1. Self-interaction correction

The self-interaction correction, which is implemented accord-
ing to [11] in terms of local orbital- and spin-dependent
potentials, is applied to the electronic states of Gd. Based
on this method, the degree of localization is determined by
the energy derivative of the single-site phase shift, that is the
Wigner delay time [12]. For a localized state, characterized by
the main quantum number n, angular momentum L = (l,m),
and spin σ , the charge density is

n(n)SIC
Lσ (�r) = − 1

π

∫ E2

E1

Im GLσ,Lσ (�r , �r; ε) dε, (2)

where E1 and E2 lie slightly below and above the energy of
the state (nLσ). This charge density is used to construct the
effective self-interaction potential,

V (n)LSD−SIC
eff,Lσ (�r) = V LSD

eff,σ (�r)+ V SIC(�r), (3)

where

V SIC(�r) = −VH[n(n)SIC
Lσ ](�r)− V LSD

xc [n(n)SIC
Lσ , 0](�r). (4)

Hence, the Hartree (H) and the exchange–correlation (xc)
potential of the localized state are explicitly subtracted from
the effective potential. Note that this correction vanishes for
delocalized states.

For each SI-corrected channel (nL̃ σ̃ ), indicated by a
tilde, the (L̃σ̃ ) element of the single-site scattering matrix
t (n), calculated within the local spin-density approximation, is
replaced by that obtained from the SI-corrected potential,

t̃ (n)Lσ = t (n)Lσ (1 − δLσ,L̃ σ̃ )+ t (n)LSD−SIC
L̃σ

δLσ,L̃ σ̃ . (5)

The resulting scattering matrix t̃ (n) is then used to calculate
the SI-corrected scattering-path operator which enters the KKR
Green function [13]. The self-interaction is thus corrected
self-consistently, without any adjustable parameter. Further,
the set of SI-corrected channels is determined by total energy
minimization. For Gd it turns out that all 4f majority states
have to be corrected.

At present, there is no relativistic version of the SIC.
To investigate the effect of the SIC on effects which are
mediated by the spin–orbit coupling—in particular the Rashba
effect in the majority surface state—we thus proceed as
follows. We employ a scaling transformation of the (radial)
Dirac equation which allows us to switch between the fully
relativistic (including spin–orbit coupling) and the scalar-
relativistic description (excluding spin–orbit coupling) [14].
This transformation is applied only to the SI-corrected
4f majority levels, thus keeping the relativistic description for
all other electronic states, in particular for the d surface states.
By this means we rely on the non-relativistic SIC but in a
relativistic framework.

2.2. Transition state approximation

In the calculation of the ground state properties, e.g. magnetic
ordering and local magnetic moments, the SI correction is
applied with full strength. For excited states, it appears that
the binding energies of the SI-corrected localized levels are
significantly too large when compared to those determined
from spectroscopical data, i.e. from photoemission intensities.
This ‘overcorrection’ of the SIC is attributed to the orbital
relaxation.

The density functional theory of Hohenberg, Kohn, and
Sham applies only if the occupation numbers of the orbitals
are either zero or one. If the occupancy of one of the single-
particle states has been changed, one has to generalize the
theory by including the occupation number, as was done by
Janak [15]. According to Janak’s theorem, the derivative of the
total energy E with respect to the orbital occupation is equal to
the eigenenergy εα of the corresponding orbital,

∂E

∂ fα
= 〈ψα|H LSD|ψα〉 = εα, (6)
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where H LSD is the LSD Hamiltonian and fα is the occupation
number of the orbital ψα . The relaxation energy 	Erelaxed is
calculated by removing an electron from an occupied state,

	Erelaxed = −
∫ 1

0
εα( fα) d fα. (7)

The total energy E includes the relaxation of all orbitals due to
the change of the occupation number. Several ways to calculate
the removal energy have been proposed [16] but they lead to
unphysical effects [17].

We start from the Taylor expansion of the eigenvalue as a
function of the occupation number in the neighborhood of Fα ,

εα( fα) ≈ ε(Fα)+ ( fα − Fα)

(
∂ε

∂ fα

)
fα=Fα

. (8)

The restriction to the first order is justified if the eigenvalue
depends almost linearly on its occupation number [18, 19].
Inserting (8) into (7) and integrating from fα = 1 to 1 − p
gives

E( fα = 1 − p)− E( fα = 1) = −pεα(Fα)

+
[

p2

2
− p(1 − Fα)

](
∂εα

∂ fα

)
fα=Fα

. (9)

To have a method similar to Koopmans’ theorem one would
need the eigenvalues at full occupancy. For Fα = 1 and p = 1,

	Erelaxed = −εα(1)+ 1

2

(
∂εα

∂ fα

)
fα=1

. (10)

The first term is the energy of the fully occupied orbital α.
The second term accounts for the orbital’s relaxation. This
term includes a ‘non-Koopmans’-like correction (relaxation of
the localized state) and the relaxation energy (relaxation of
the other orbitals). In many applications to localized states,
the relaxation is significant. To achieve an accurate electron
removal energy, this term has to be included in the energy
calculation. Using the Hellmann–Feynman theorem [20], the
second term on the right-hand side of (10) can be written as

∂εα

∂ fα
= 〈ψα|∂H LSD

∂ fα
|ψα〉. (11)

If the relaxation of other orbitals is neglected (in analogy to
Koopmans’ theorem), then (11) reduces to

∂εα

∂ fα
= 〈ψα |uα + ρα

∂εxc

∂ρ
|ψα〉, (12)

where uα is the Coulomb potential associated with orbital α
and εxc is the exchange–correlation energy per particle. For
fα = 1, the first term is the self-Coulomb interaction of an
electron. The second term is the change of the exchange–
correlation energy (to first order in the occupation number)
of the system due to removing one electron from the orbital
α. Equation (12) can be interpreted as the self-interaction
of an orbital whose occupation number is reduced. Adding
this positive term to the energy of the orbital α increases
the removal energy calculated within the LSD. Thus, the

removal energy of a localized orbital with corrected potential
Vα becomes

	Eunrelaxed = −〈ψα |H LSD|ψα〉 − 1
2 〈ψα |V SIC

α |ψα〉. (13)

This is the unrelaxed removal energy when an electron is
removed from orbital α. The removal energy is larger than
its experimental counterpart because the relaxation of other
orbitals is neglected.

As is apparent from (13), the removal energy of the
orbital α is calculated with half strength of the SIC potential
associated with this orbital. By this method, i.e. by calculating
the LSD and the SIC ground state potentials, one obtains
removal energies with good accuracy [3, 17]. Following
previous works we call this approach the transition state
approximation (TSA).

2.3. Exchange parameters and Curie temperature

The self-interaction correction also affects the exchange
interaction among the Gd sites. To address this issue,
we calculated the Curie temperature of both the bulk
and the surface. The Curie temperature is calculated
within the Heisenberg model by Monte Carlo simulations
(MCSs). The exchange parameters Ji j are calculated by
means of the Liechtenstein formula [21]. The critical
temperature is determined accurately by the fourth-order
Binder cumulant [22].

3. Results and discussion

3.1. Magnetic structure

The total energy minimization implies that all 4f majority states
have to be SI corrected. As a result, their binding energies
increase sizably from about 5.0 eV for LSD to about 17.0 eV
for SIC (figure 1). Consequently, these states become more
localized.

The magnetic ground state is changed from antiferromag-
netic ordering, as obtained within the LSD approximation,
to ferromagnetic ordering upon application of the SIC. The
LDA + U method also predicts the magnetic ordering
ground state and the magnetic moment correctly but relies on
adjustable parameters. In LDA + U calculations the change
of magnetic ordering was attributed to the removal of the
4f minority states from the Fermi level to larger energies [6, 7].
A small shift of the minority states is found in our calculations
as well; it is a result of the charge redistribution.

For the ferromagnetic ground state, Heisenberg exchange
parameters Ji j were computed for Gd bulk (figure 2). For
the first three nearest neighbors the coupling is ferromagnetic
(Ji j > 0); the exchange parameters for larger distances change
sign and oscillate (inset of figure 2). However, the exchange
parameters decrease (in absolute value) rapidly with distance;
for example, Ji j of the sixth shell is about 5% of that of the first
shell.

To address the effect of the surface relaxation on the
exchange parameters, a calculation was performed for two
slabs with 12-layer thickness, one unrelaxed, the other with 4%
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Figure 1. Effect of self-interaction correction on the binding energy
of 4f majority states in bulk Gd(0001). The spin-resolved spectral
density is calculated within the local spin-density (LSD)
approximation and within the self-interaction correction (SIC) at
�k‖ = 0.

Figure 2. Heisenberg exchange parameters Ji j of Gd bulk (top). To
emphasize the oscillations of the Ji j , we show Ji jr 3

i j in the inset (ri j

distance of sites i and j ).

surface contraction (figure 3). The relaxation has a profound
effect on the surface Ji j ; more precisely, this Ji j is increased
by about 50%. Thus, we expect a sizable effect on the Curie
temperature for the slabs. Please note that in any case the
magnetic coupling of the surface layer with the sub-surface
layer is ferromagnetic.

We applied MCSs for three 12-layer slabs: (i) with Ji j

taken from the bulk calculation (‘bulk’), (ii) with Ji j for
the unrelaxed surface (‘unrelaxed’), and (iii) with Ji j for the
relaxed surface (‘relaxed’). In accordance with the increasing
exchange parameters, in particular those of the first shells, TC

increases as well: from 320 to 330 K for ‘bulk’ via 330–340 K

Figure 3. Effect of the surface relaxation on the Heisenberg
exchange parameters. The bars represent Ji j of the first shell with
sites located in adjacent layers (black with 4% surface contraction;
gray without surface relaxation).

for ‘unrelaxed’ up to 380–400 K for ‘relaxed’. To be more
precise, the exchange parameter of the first shell is 4.13 meV
for ‘bulk’, 4.37 meV for ‘unrelaxed’, and 6.00 meV for
‘relaxed’. Consequently, TC for the ‘bulk’ case matches best
the experimental bulk value of 293 K [23]. We also performed
MCSs for ‘bulk’ systems with a significantly increased size;
in all cases TC was within the range reported above. Please
note that slabs are free-standing Gd layers with two surfaces.
Therefore it is not possible to compare our results directly with
experiments [24].

The findings reported in the preceding evidence the
importance of the self-interaction correction for the magnetic
ordering in systems with correlated electrons. Second, they
show the importance of the surface relaxation to the critical
temperature. The increased Heisenberg exchange parameters
at the surface result in an enhanced TC as compared to the
unrelaxed system.

3.2. Surface state dispersion and Rashba spin–orbit coupling

So far, all calculated properties, such as magnetic ordering
and geometrical constants, were associated with the ground
state. To take into account the relaxation of electrons due to
an excitation we applied the transition state approximation.

In figure 4 the spectral density of the 4f majority states
in Gd(0001) calculated within the LSD, SIC, and TSA is
shown. Compared with experimental values (gray bar), the
LSD predicts too low a binding energy, while the SIC produces
too high a binding energy (cf. the ‘overcorrection’ in figure 1).
Applying the TSA, the binding energy increases to 10.5 eV,
which is in reasonable agreement with the experimental value
(8.0–8.5 eV).

The occupied surface states of Gd(0001) are mostly
dz2 majority states which hybridize with the 4f majority
states. Consequently, the treatment of the electronic correlation
within the 4f states has an effect on both binding energy
and dispersion of the surface states. The d–f hybridization
of the surface state can be quantified by the ratio of the
d and f contributions to its spectral density N at �k‖ = 0.
The d–f hybridization of the surface state is larger for SIC
(d/f = 7) than for LSD (d/f = 50), which is at first glance
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Figure 4. Effect of the electronic correlation on the binding energy
of 4f majority states in the surface layer of Gd(0001). The spectral
density at �k‖ = 0 is calculated within the local spin-density
approximation (LSD), the self-interaction correction (SIC), and the
transition state approximation (TSA). The range of experimental
binding energies [6] is marked by the gray bar (of arbitrary height).

counterintuitive. A closer inspection of the spectral density
shows that the d contribution to the majority surface state
does not change upon application of TSA or SIC. However,
spectral weight of f majority character is transferred from
the unoccupied to the occupied states and is mixed into the
d majority surface state for TSA and SIC. This ‘band-filling’
effect manifests itself in the decreasing d/f ratios and in the
increased magnetic moments for TSA and SIC (8.0 μB), as
compared to LSD (8.0 μB).

The majority surface state dispersion of Gd(0001) is
shown in figure 5. For the LSD approximation, the binding
energy of 0.22 eV at �k‖ = 0 (�̄) deviates sizably from the
experimental result (0.16 eV, dots). More striking, however, is
the positive dispersion at small wavevectors, which does not
match the negative dispersion in experiment. Application of
the SIC leaves the binding energy almost unchanged (0.23 eV)
but results in a strongly negative dispersion, which also does
not fit to experiment. The surface state dispersion calculated
by the TSA shows a plateau at small k‖, and the binding energy
of 0.18 eV almost hits that of the experiment.

In a non-magnetic crystal with inversion symmetry the
electronic states are not spin polarized, due to Kramers’
degeneracy. The spin degeneracy is the result of both time-
reversal and inversion symmetry. At surfaces the inversion
asymmetry results, via the spin–orbit coupling (SOC), in a
splitting in the dispersion relation. At a magnetic surface, spin
degeneracy is lifted by the exchange interaction and majority
spins are aligned along the quantization axis. The effect of
the spin–orbit interaction is mainly modification of the energy
dispersion, i.e. moving the dispersion relations with respect to
each other. Figure 6 depicts the spin structure of split surface
states at a non-magnetic and a magnetic surface.

Figure 5. Effect of electronic correlations on the dz2 majority surface
state of Gd(0001). The spectral densities calculated within the local
spin-density (LSD) approximation, the transition state approximation
(TSA), and the self-interaction correction (SIC) are shown along the
M̄–�̄–M̄ line of the surface Brillouin zone. Experimental data (dots)
are reproduced from [8].

The spin–orbit interaction and magnetism are taken into
account on equal footing in our relativistic layer KKR code.
For clarity, we reproduce the TSA data from figure 5 and add
eye-guiding horizontal lines in figure 7. As a consequence
of the Rashba SOC, the surface state dispersion, as obtained
from the spectral density at the surface, becomes asymmetric
in the direction normal to the in-plane magnetization. As
in experiment, the maximum of the dispersion is shifted off
the Brillouin center to positive �k‖. We note in passing that
magnetization reversal ( �M → − �M) mirrors the dispersion,
that is E(�k‖, �M) = E(−�k‖,− �M). Further, the dispersion
maximum of the associated d minority state (not shown here)
is shifted oppositely to that of the majority surface state.

From figure 7 one might conclude that the Rashba effect
is overestimated in theory. One possible reason could be
too large an asymmetry of the surface state confinement,
which essentially determines the size of the Rashba effect.
Although we cannot rule out this explanation, there may be
a few other explanations for this mismatch between theory
and experiment. (i) The TSA is a first-order perturbation to
SIC and LSD; it does not rely on an adjustable parameter.
Thus, the curvature of the surface states could perhaps be better
described within LDA + U but at the cost of the adjustable
parameter U (which is fitted to experimental data). (ii) The
effective mass of surface states is sometimes overestimated
in KKR, in which the vacuum region is described by so-
called empty muffin-tin spheres on the parent lattice (here
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Figure 6. The schematic spin structure of Rashba-split and exchange-split surface states at a non-magnetic surface (top) and at a magnetic
surface (bottom). The left panels show systems with inversion symmetry while the right panels show systems without inversion symmetry.
The Rashba spin–orbit coupling in a ferromagnetic two-dimensional electron with in-plane magnetization �M removes the inversion symmetry
of the spin-split band structure, E(+�k‖) �= E(−�k‖) for �k‖ ⊥ �M .

Figure 7. The d majority surface states of Gd(0001) calculated
within TSA. The Rashba effect shows up as asymmetry of the
dispersion (E(�k) �= E(−�k)). The in-plane magnetization is
perpendicular to �k‖, �k‖ along M̄–�̄–M̄ . Experimental data (dots) are
reproduced from [8].

hcp(0001)). This effect showed up for example in the free-
electron-like surface state on Au(111); see [25]. (iii) The
experimental dispersion was obtained from the peak positions
in angle-resolved photoemission spectra. The maxima are
typically rather broad for ferromagnetic systems (about 0.2–
0.3 eV FWHM in figure 1(a) of [8]) and, thus, introduce some
uncertainty in the detailed dispersion.

Summarizing this section, we conclude that the TSA
considerably improves the description of excited states in

systems with electronic correlations, as compared to the LSD
approximation and the SIC. Although the agreement with
spectroscopical data, e.g. photoemission, is not as good as in
LDA + U , we would like to add in favor of the TSA that it
does not rely on any adjustable parameters, like the Hubbard
parameters U and J in LDA + U approaches [5]. The latter
are typically chosen to reproduce experiments.

The hybridization of the 4f majority states (which are
treated by SIC) with the d majority surface state has a profound
effect on both the binding energy and the dispersion of the
latter. On top of the TSA treatment, we have shown that even
the Rashba spin–orbit coupling in the surface states is captured
correctly. As a result, we conclude that an advanced treatment
of the electronic correlation in the localized spin-polarized
states is not only important for the magnetic structure but also
improves the properties of the valence states.

4. Concluding remarks

The present first-principles study on Gd(0001) shows that
the self-interaction correction to the local spin-density
approximation improves considerably the description of
ground state properties of correlated systems. Its flavor for
excited states, i.e. the transition state approximation, is able
to describe correctly spectroscopic data. In summary, we
have dealt successfully with a complex interplay of electronic
correlations, surface relaxation, and spin–orbit coupling on the
magnetic ordering, the Curie temperature, and the surface state
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dispersion. A key issue in our multiple scattering theoretical
calculations is that these do not rely on any adjustable
parameter which is related to electronic correlations.

The combination of ab initio calculations beyond LSDA
and Monte Carlo calculations makes it possible to extend the
Curie temperature calculation to more realistic systems, e.g. to
Gd(0001)/W(110). This system shows in particular a thickness
dependence of the Curie temperature [24].
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