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The noncollinear spin-spiral density wave of the uniform electron gas is studied in the framework of
reduced-density-matrix-functional theory. For the Hartree-Fock approximation, which can be obtained as a
limiting case of reduced-density-matrix-functional theory, Overhauser showed a long-time ago that the para-
magnetic state of the electron gas is unstable with respect to the formation of charge- or spin-density waves.
Here we not only present a detailed numerical investigation of the spin-spiral density wave in the Hartree-Fock
approximation but also investigate the effects of correlations on the spin-spiral density wave instability by
means of a recently proposed density-matrix functional.
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I. INTRODUCTION

For many decades, the uniform electron gas �UEG� has
served as the model for the description of many-particle
systems.1 However, the determination of its ground state,
without any symmetry assumptions, still remains a chal-
lenge. Specific symmetries for the fully correlated uniform
electron gas have been investigated using Monte Carlo
methods.2,3 These studies focus mostly on broken spatial
symmetry, i.e., Wigner crystallization or broken global spin
symmetry.

For the electron gas with constant electron density and
uniform spin polarization, the ground-state energy is analyti-
cally accessible in the Hartree-Fock approximation. Over-
hauser showed in his seminal work4,5 that within the Hartree-
Fock approximation the aforementioned homogeneous
ground state exhibits an instability w.r.t. the formation of
charge- and spin-density waves. Wigner crystallization
within Hartree-Fock has been investigated in Ref. 6. Only
recently the combined local spatial- and spin-symmetry
breaking of the Hartree-Fock ground state has been studied
using a Monte Carlo method which optimizes the ground-
state energy in the space of single Slater determinants.7 How-
ever, this study still remains in the regime of collinear spin
polarization.

In the present work we investigate the case of local spin-
symmetry breaking, specifically a noncollinear spin-spiral
symmetry. We employ reduced-density-matrix-functional
theory �RDMFT� both in the limiting case of the Hartree-
Fock approximation as well as for the correlated electron gas
using the recently proposed density-matrix-power
functional.8,9

II. THEORETICAL FRAMEWORK

A. Reduced-density-matrix-functional theory

The basic variable in RDMFT is the one-body-reduced-
density matrix �1-RDM� defined by

�����r;r�� � TrN�D̂�̂��
† �r���̂��r�� , �1�

where D̂ is the zero-temperature statistical operator of an
ensemble of N-electron states,

D̂ � �
i

�i
2��i

N�	�i
N� with �

i

�i
2 = 1, �2�

where �̂�
†�r� and �̂��r� are fermionic creation and annihila-

tion operators, respectively. The 1-RDM is a Hermitian op-
erator in the single-particle Hilbert space and can be repre-
sented by its spectral decomposition,

��r;r�� = �
i

ni�i�r��i
†�r�� , �3�

where the eigenvalues ni are called occupation numbers
�ONs� and the corresponding single-particle Pauli-spinor
eigenstates �i�r�= 
�i↑�r� ,�i↓�r��T are referred to as natural
orbitals �NOs�. It was shown by Gilbert10 that the N-particle
ground state is a unique functional of the ground-state
1-RDM, i.e., ��0

N�= ��0
N
�gs��. Therefore the ground-state en-

ergy for a system of N interacting electrons moving in an

arbitrary but fixed �possibly nonlocal� external potential V̂ is
also a functional of the 1-RDM,

EV
�gs� = 	�0
N
�gs��ĤV��0

N
�gs�� , �4�

where ĤV= T̂+ V̂+Ŵ+Eion is a generic interacting many-

body Hamiltonian with kinetic energy T̂, external potential

V̂, electron-electron interaction Ŵ, and a constant energy
contribution Eion from the degrees of freedom that are not
treated quantum mechanically.

The ground-state-energy functional can be decomposed
into the following components:
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EV
�� = T
�� + V
�� + W
�� + Eion �5�

with the kinetic energy �atomic units are used throughout the
paper and the superscript “gs” is omitted for brevity�,

T
�� = �
�
� d3r lim

r�→r

1

2
�� � ����r;r�� �6�

and the energy contribution due to the external potential

V
�� = �
�
� d3rV�r�����r;r� . �7�

Here we are assuming a local spin-independent external po-
tential. The Hohenberg-Kohn theorem of density-functional
theory �DFT� proves a one-to-one mapping between the
ground-state density and the N-particle ground state, consid-
ering only local external potentials. However, in RDMFT the
Gilbert theorem ensures a one-to-one correspondence be-
tween the ground-state 1-RDM and the N-particle ground
state by considering the broader class of nonlocal external
potentials. This also implies the one-to-one mapping between
a local potential and the ground-state 1-RDM. Note that in
contrast to usual Kohn-Sham DFT all single-particle contri-
butions to the ground-state energy EV are explicitly given in
terms of the ground-state 1-RDM. However, the interaction
energy,

W
�� = �
�1�2

� � d3r1d3r2

P�1�2

gs 
���r1,r2�

�r1 − r2�
�8�

is only known explicitly in terms of the ground-state pair
density,

P�1�2

gs 
���r1,r2�

� 	�0
N
����̂�1

† �r1��̂�2

† �r2��̂�2
�r2��̂�1

�r1���0
N
��� . �9�

The basic idea of RDMFT is to extend the domain of the
ground-state-energy functional in Eq. �4� to all
ensemble-N-representable 1-RDMs 
as defined in Eq. �1��
and then employ the variational principle in order to find the
ground-state 1-RDM as well as the ground-state energy cor-
responding to a fixed external potential V. The necessary and
sufficient conditions for a 1-RDM to be
ensemble-N-representable are11

�
i

ni = N and 0 	 ni 	 1, �10a�

�
�
� d3r�i�

� �r�� j��r� = 
ij . �10b�

In order to apply RDMFT in practice we need to approxi-
mate the functional dependence of the pair density on the
1-RDM. Since we want to study the spin-spiral density wave
�SSDW� instability in the uncorrelated �Hartree-Fock, HF�
and the correlated regime, we focus on the so-called density-
matrix-power functional introduced in Ref. 8,

P�1�2

� 
���r1,r2� �
1

2
��1�1

�r1;r1���2�2
�r2;r2�

−
1

2
��1�2

� �r1;r2���2�1

� �r2;r1� �11�

for 0.5	�	1. Here the power of the 1-RDM has to be read
in the operator sense, i.e.,

���r;r�� = �
i

ni
��i�r��i

†�r�� . �12�

As limiting cases it contains both the uncorrelated HF ap-
proximation �for �=1� as well as the correlated Müller or
Buijse-Baerends functional �for �=0.5�.12,13 Also, it was re-
cently shown9 that the power functional yields good correla-
tion energies for the unpolarized uniform electron gas.

B. Overhauser instability of the uniform electron gas

The system under investigation is the UEG in three di-
mensions, i.e., a gas of interacting electrons subject to an
external potential induced by a uniformly distributed positive
background charge. Overhauser has proved that the true HF
ground state does not correspond to a homogeneous electron
density �although there are solutions to the HF equations
where the symmetry is not broken� since the HF energy can
be lowered by forming a charge-density wave �CDW� or
spin-density wave �SDW�.5 As an explicit example he as-
sumed, in addition to the regular HF potential V�k, a poten-
tial gk in the HF Hamiltonian that couples plane waves of
opposite spin whose momenta differ by q,

ĤHF = �
k�

 k2

2
− V�k�ĉk�

† ĉk� − �
k

gk�ĉk+q/2↑
† ĉk−q/2↓

+ ĉk−q/2↓
† ĉk+q/2↑� . �13�

Overhauser demonstrated that with the ansatz

�1k�r� =�cos�1

2
�k�e−i/2q·r

sin�1

2
�k�ei/2q·r � eik·r

�

, �14a�

�2k�r� =�− sin�1

2
�k�e−i/2q·r

cos�1

2
�k�ei/2q·r � eik·r

�

, �14b�

the HF self-consistent equations are transformed into a set of
equations relating the orbital angles �k, the potential gk, and
the regular HF potential V�k. Note that the generic single-
particle index i here has been replaced by the joint index i
→ ��b=1,2� ,k�. After taking the thermodynamic limit �i.e.,
the volume 
 and the number of particles N are taken to be
infinity such that N


 remains constant�, these equations read
�cf. Ref. 14�,
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V↑k−q/2 =� d3k�

�2��3

4�

�k − k��2

� 
n1k� cos2��k�

2
� + n2k� sin2��k�

2
�� ,

�15a�

V↓k+q/2 =� d3k�

�2��3

4�

�k − k��2

� 
n1k� sin2��k�

2
� + n2k� cos2��k�

2
�� ,

�15b�

2gk =� d3k�

�2��3

4�

�k − k��2
�n1k� − n2k��sin��k�� . �15c�

The right-hand side of Eq. �14b� implicitly depends on q via
the nbk and the �k. The nbk are the occupation numbers �ei-
ther 0 or 1� of the orbitals �bk which comprise the HF
ground-state Slater determinant and specify the Fermi sur-
face �the boundaries of the integration� in Eqs. �15a�–�15c�.
The orbital angles �k on the other hand are given by

tan��k� =
2gk

�↑k−q/2 − �↓k+q/2
, �16a�

�↑k−q/2 =
�k −

1

2
q�2

2
− V↑k−q/2, �16b�

�↓k+q/2 =
�k +

1

2
q�2

2
− V↓k+q/2. �16c�

Note that the origin in momentum space is shifted by q /2
compared to the definitions in Ref. 14. The energy contribu-
tion due to the pairing potential gk favors a hybridization of
spin-up and spin-down plane waves differing by q in their
momenta. The orbital angles �k introduced in Overhauser’s
ansatz Eq. �14� describe this hybridization. Another way of
looking at the orbital angles �k is to consider them, together
with the angles ��r�=q ·r, as angles defining a rotation in
spin space represented by

U�r;k� � e−ı��r��z
e−ı�k�y

=�cos�1

2
�k�e−i/2q·r − sin�1

2
�k�e−i/2q·r

sin�1

2
�k�ei/2q·r cos�1

2
�k�ei/2q·r � ,

�17�

where �y/z are Pauli matrices. The orbitals of Eq. �14a� or
Eq. �14b� can then be thought of as being constructed by
transforming pure spin-up �spin-down� plane waves in spin
space according to the rotation Eq. �17�. First the plane wave
is rotated around the y axis by an angle �k, i.e., an angle
depending on its momentum. Then it is rotated around the z
axis by an angle ��r�=q ·r which is the same for all plane
waves, independent of the wave vector but dependent on the
spatial position �see Fig. 1�. With this consideration it is clear
that the angle �k has to be restricted to the interval 
0,�� in
order to assign a unique azimuthal rotation angle.

In previous studies within RMDFT �Refs. 9 and 15� it was
assumed that the 1-RDM exhibits the symmetries present in
the Hamiltonian, i.e., the NOs are pure spin-up�down� plane
waves while here we use orbitals of the form of Eq. �14� as
NOs for our RDMFT treatment of the UEG. The spin-spiral
wave vector q and the angle �k will be treated as variational
parameters for the NOs. It can easily be verified that the NOs
of Eq. �14� form a complete and orthonormal set and that the
corresponding electron density is spatially constant, i.e.,
CDWs are not described within this ansatz for the NOs.
Throughout the paper we will specify the density � in terms
of the Wigner-Seitz radius rs, the radius of a sphere which
contains one electron on average

� �
3

�4�rs
3�

.

The magnetization of the UEG is defined by

m�r� � −
1

2 �
���

	���̂��
† �r������̂��r����

= −�
R�↑↓�r;r�

I�↑↓�r;r�

1

2
��↑↑�r;r� − �↓↓�r;r�� � �18�

and varies in space as

FIG. 1. �Color online� The effects of the spin rotation U�r ;k� on
pure spin-up �dashed arrow� or pure spin-down �solid arrow� natu-
ral orbitals �plane waves� for two momenta k1/2. The angle �k speci-
fies the cone on which the spin is rotating. The position on the cone
is given by the angle ��r�=q ·r, which is the same for all natural
orbitals.
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m�r� = − �A cos�q · r�
A sin�q · r�

B
� , �19a�

A �
1

2
� d3k

�2��3 �n1k − n2k�sin��k� , �19b�

B �
1

2
� d3k

�2��3 �n1k − n2k�cos��k� , �19c�

i.e., the x and y components of the magnetization rotate in
space along the direction of q with a periodicity given by the
wavelength q= �q�. This geometry of the magnetization is
usually referred to as SSDW.16

III. NUMERICAL IMPLEMENTATION

Having chosen a functional and having made an ansatz
for the NOs, we minimize the functional for the ground-state
energy. The functional depends on nbk, �k and the spin-spiral
wave vector q. The contribution Eion coming from the uni-
form positive background charge cancels exactly the classi-
cal contribution of the interaction energy since the density is
constant. Accordingly the energy per electron reads

e�
nb,���q� = t
nb,���q� − w�1
nb,�� − w�2
nb,�� �20�

with the kinetic energy per electron

t
nb,���q� =
1

2�
� d3k

�2��3 ��n1k + n2k�k2

− q · k�n1k − n2k�cos��k�� +
q2

8
, �21�

the energy contribution from exchangelike terms of orbitals
with the same b �intraband exchange�,

w�1
nb,�� =
1

2�
� � d3k1d3k2

�2��6

4�

�k1 − k2�2

� ��n1k1
n1k2

�� + �n2k1
n2k2

���cos2��k1
− �k2

2
�
�22�

and the energy contribution from exchangelike terms of or-
bitals with opposite b �interband exchange�,

w�2
nb,�� =
1

2�
� � d3k1d3k2

�2��6

4�

�k1 − k2�2

� ��n1k1
n2k2

�� + �n2k1
n1k2

���sin2��k1
− �k2

2
� .

�23�

We assume that the symmetry is only broken along the di-
rection of q which is chosen to be parallel to the z axis.
Accordingly we can use cylindrical coordinates in momen-
tum space, i.e., nbk=nbk�kz

and �k=�k�kz
. We also use the

following additional symmetry assumptions:

nbk�−kz
= nbk�kz

, n1k � n2k, �24a�

�k���kz�
=

�

2
�1 � ak��kz�

� �24b�

with 0	ak	1. In this way we guarantee that the energy
gain in the part of the energy which explicitly depends on q
is maximized. The z component of the magnetization van-
ishes under these symmetry assumptions �planar spiral�.

The configurations

n1k
PM = ���k − ezkf� − kf� + ���k + ezkf� − kf� ,

n2k
PM = 0, ak

PM = 1, q = 2kfez, �25a�

and

n1k
FM = ���k − 21/3kf�� ,

n2k
FM = 0, ak

FM = 0, q = 0,

kf � �9�

4
�1/3 1

rs
, �25b�

which are compatible with Eq. �24�, correspond to the non-
magnetic �usually in this context called paramagnetic 
PM��
and ferromagnetic �FM� state of the UEG within HF, respec-
tively.

When discretizing the integrals of Eqs. �21�–�23� we as-
sume that the ONs nbk and the angles ak are constant within
annular regions in k space,


i � �k�k�
i− 	 k� 	 k�

i+; kz
i− 	 kz 	 kz

i+�� . �26�

Then the discretized energy contributions are

t
nbi,�i��q� = �
bi

nbiDKIi +
q2

8
− q�

i

�n1i − n2i�cos��i�DQIi,

�27a�

w�1
nbi,�i� =
1

2�
bij

�nbinbj��cos2��i − � j

2
�DXIij , �27b�

w�2
nbi,�i� = �
ij

�n1in2j��sin2��i − � j

2
�DXIij , �27c�

where the integral weights are given by

DKIi �
1

8�2�
� �


i

dk�dkz�k�
3 + k�kz

2� , �28a�

DQIi �
1

8�2�
� �


i

dk�dkz�k�kz� , �28b�
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DXIij �
1

2�
� � �


i

dk�1dkz1d�1

�2��3 � � �

j

dk�2dkz2d�2

�2��3

�
4�k�1k�2

k�1
2 + k�2

2 + �kz1 − kz2�2 − 2k�1k�2 cos��1 − �2�
.

�28c�

The integrals �28a� and �28b� are readily solved and the in-
tegral �28c� can ultimately be reduced to elliptic integrals,
which are numerically accessible with high accuracy. Since
the momenta are treated as continuous variables we stay in
the thermodynamic limit. Thus all energies obtained numeri-
cally are variational. The error introduced by the discretiza-
tion is solely due to the assumption that the nbk and �k are
constant within the elementary volume elements 
i and can
systematically be reduced by increasing the number of dis-
cretization points.

After having discretized the problem, the minimization
of the energy functional of Eq. �20� becomes a high-
dimensional optimization problem. We use a steepest-descent
algorithm for the minimization and ensure that the con-
straints, Eq. �10�, are satisfied during the minimization pro-
cess. Starting from some initial 1-RDM and some initial dis-
cretization in momentum space the energy is minimized for a
fixed spin-spiral wave vector q. Then the discretization is
refined in those regions of momentum space where the nbi
and/or the ai show the largest variations. The minimization
on the refined momentum-space mesh starts from a reinitial-
ized 1-RDM in order to prevent dependencies on the result
of the minimization on the coarser grid. Finally we compare
the total energies at different q in order to determine the
optimal spin-spiral wave vector qopt for various densities.

IV. RESULTS

A. Hartree Fock

We first use our numerical implementation to investigate
Overhauser’s SSDW state in the HF approximation, i.e., the
density-matrix-power functional with �=1. From the consid-
erations in Eq. �24� we see that it is sufficient to minimize
w.r.t. a 1-RDM whose ONs are only nonzero for orbitals with
b=1 and �q�� 
0,2kf� since both the paramagnetic and the
ferromagnetic HF solutions are accessible under these con-
ditions. The minimization at q=0 and q=2kf yields exactly
the ONs nbi and angle parameters ai given in Eqs. �25b� and
�25a�, respectively. Therefore we can read the total energy
per particle as a function of the spin-spiral wave vector in the
following way: e�q=0� is the energy of the ferromagnetic
state and e�q=2kf� corresponds to the energy of the para-
magnetic state. For intermediate values, 0�q�2kf, e�q� cor-
responds to a SSDW configuration with mz=0 �planar spiral�.
Overhauser’s statement can then be expressed as
�qe�q� �q=2kf

�0, i.e., the paramagnetic configuration is un-
stable w.r.t. the formation of a SSDW.

In Fig. 2 we show the dependence of the total energy per
particle on the spin-spiral wave vector q for various densi-
ties. Consistent with Overhauser’s proof, the derivative of
e�q� is positive at q=2kf. It is clear from Fig. 2 that the

optimal spin-spiral wave vector moves away from the para-
magnetic configuration �q=2kf� as the density decreases.
Furthermore the difference between the total energy at the
minimum and the total energy at q=2kf increases with in-
creasing rs, i.e., the instability is more pronounced at lower
densities. Below some critical density, however, the ferro-
magnetic state �q=0� becomes the most stable solution. This
is not in contradiction with Overhauser’s statement since the
spin-spiral state is still lower in energy than the paramagnetic
state. A comparison of the energy per electron in the para-
magnetic, ferromagnetic, and SSDW phases is depicted in
Fig. 3. We provide results for the noncollinear magnetic
states of the UEG in order to extend the picture given in Ref.
7. It seems that the gain in energy by forming a collinear

0 0.5 1 1.5 2
q/kf

-0.0005

0

0.0005

0.001

0.0015

0.002

e(
q)

-e
(2

k f)
(a

.u
.)

rs=4.50
rs=5.00
rs=5.20
rs=5.35
rs=5.45
rs=5.65

FIG. 2. �Color online� Hartree-Fock total energy per electron of
the SSDW state as a function of the spin-spiral wave vector q at
various rs. The value e�q=2kf� is subtracted in order to emphasize
the behavior of the minimum at different densities. For increasing
density �decreasing rs� the minimum shifts to higher values of qopt

and the energy gained against the paramagnetic state by forming a
spin spiral decreases.

4.8 5 5.2 5.4 5.6
rs (a.u.)

-0.048

-0.047

-0.046

-0.045

-0.044

-0.043

-0.042

e
(a

.u
.)

ePM
eFM
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4.8 5 5.2 5.4 5.6
rs (a.u.)

0.1

0.2

0.3

0.4

0.5

0.6

A
(1

0-3
a.

u.
)

FIG. 3. �Color online� Dependence of the energy per electron on
rs, within the Hartree-Fock approximation, for the paramagnetic,
ferromagnetic, and SSDW phases in the region of the paramagnetic-
ferromagnetic crossover. The inset shows the behavior of the am-
plitude A, defined in Eq. �19b�, at the optimal spin-spiral wave
vector.
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SDW/CDW state as presented in Ref. 7 is larger compared to
the energy gain by forming a SSDW. This is consistent with
the qualitative argument already given by Overhauser, that
the superposition of a left- and right-rotating SSDW yielding
a collinear SDW will increase the gain in energy.5

To describe the resulting behavior of the optimal wave
vector qopt�rs� for the noncollinear spin-spiral we propose a
simple, empirical scaling law,

qopt�rs� = 2kf�1 − � rs

r0
�3��

, �29�

where r0�5.7 and ��0.2. The proposed scaling behavior of
qopt reproduces the numerical data very accurately as can be
seen in Fig. 4. It should be emphasized that we do not find
any optimal spin-spiral wave vector qopt�kf. Note that for
densities close to the transition to the ferromagnetic state the
optimum wave vector qopt can be quite different from 2kf
while for higher densities it is very close to this value. The
results in Ref. 7 indicate a different behavior of the wave
vector at high densities. This can be understood by consid-
ering that in Ref. 7 a general superposition of collinear
SDWs and CDWs was considered while in our work we
investigate the broken-symmetry solution due to a single
noncollinear SSDW.

The effect of the refinement of the discretization in mo-
mentum space is shown in Fig. 5. By sampling nbi and ai
more often in regions of higher variations we both lower the
energy and reduce the numerical noise in e�q�. The conver-
gence of the total energy can be inferred from the values
e�q=2kf� at different discretizations and comparing to the
analytic paramagnetic energy. For the case of rs=5.0 we ob-
tain a spin-spiral energy that is lower than the analytic para-
magnetic energy at the optimal value of the spin-spiral wave
vector. At higher densities �lower rs� the energy gain by
forming a SSDW is lower so we would need a very fine
discretization to obtain numerical results lower than the ana-
lytic paramagnetic energy. However, considering the numeri-
cal value of the paramagnetic energy at the same discretiza-

tion is sufficient to demonstrate the instability w.r.t. a SSDW
formation because the computed energies are variational as
discussed in Sec. III. In order to determine the dependence of
the optimal spin-spiral wave vector qopt on the density, we
therefore refine the momentum-space discretization until qopt
is converged.

For our numerical results we have verified that the ONs
and the angular parameters ai satisfy Overhauser’s self-
consistent Eqs. �14b� and �15� by iterating them only once.
The difference between the angles ai in the occupied regions
before and after the iteration is numerically zero for all val-
ues of q. This means that choosing a spin-spiral wave vector
we can always find a solution of the self-consistent equations
derived by Overhauser. Since the total energy does not de-
pend on the ai in regions where nbi=0, one self-consistency
loop furthermore fixes the angles ai in unoccupied regions of
k space because they appear only on the left-hand side of Eq.
�15�. This is necessary to construct the proper HF dispersions
�cf. Fig. 6� also for the unoccupied states. In a complemen-
tary work we have investigated the SSDW state using the
optimized-effective-potential �OEP� method within the
framework of noncollinear spin-DFT.17 In contrast to our
findings within the OEP-DFT framework, i.e., an effective
single-particle theory restricted to local external potentials,
here we do not find holes below the Fermi surface �cf. Ref.
17 for details�. This is expected because it was shown in Ref.
18 that the HF ground state has no holes below the Fermi
surface if the interaction is repulsive. Therefore our assump-
tion of occupying only one band is justified.

At the single-particle level we have an intuitive under-
standing of the instability: as the two distinct spin-up and
spin-down regions of the paramagnetic state are squeezed
into each other, the orbitals in the overlapping region hybrid-
ize. This hybridization then leads to the opening of a direct
gap between the HF single-particle dispersions correspond-
ing to b=1,2 at kz=0 as well as to a lowering of both the
symmetry and the total energy of the system. The mixing of
the spin-up and spin-down orbitals is given by the orbital
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FIG. 4. �Color online� Dependence of the Hartree-Fock optimal
spin-spiral wave vector qopt on the density, given by rs. The pro-
posed approximation by a simple scaling law Eq. �29� is shown as
the dashed line.
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FIG. 5. �Color online� Hartree-Fock total energy per electron as
a function of the spin-spiral wave vector q at the density corre-
sponding to rs=5.0. The data sets represent results at different dis-
cretizations. The dashed horizontal line visualizes the analytic value
of the paramagnetic ground-state energy. The optimal spin-spiral
wave vector is qopt�1.6kf.
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angles �k, capable of describing a continuous transition
between the paramagnetic and the ferromagnetic states

Eqs. �25a� and �25b�, respectively�. The behavior of the or-
bital angles at the optimal spin-spiral wave vector is shown
in Fig. 7.

B. Correlated functionals

The density-matrix-power functional reduces to the un-
correlated HF approximation for �=1 and to the Müller
functional for �=0.5. The latter one is known15 to overcor-
relate and therefore one expects that decreasing � from 1
→0.5 increases the amount of correlation in the system. This
picture was verified in Ref. 9, where an optimal value of �
�0.6 was found in the regions of metallic densities for the
paramagnetic UEG. In Fig. 8 the dependence of the total
energy per particle at rs=5.0 is shown for various �. It
should be noted that the configuration for q�2kf cannot be
interpreted as the paramagnetic state in the correlated case.
This is due to the fact that correlations smear out the sharp
step found for the uncorrelated case in the momentum distri-
bution around the Fermi surface �see Ref. 15 for details�.
Therefore at q=2kf the �fractionally� occupied regions in
momentum space are not necessarily disjoint. Only when the
occupied regions separate into two parts the configuration
may corresponds to the paramagnetic state. However, the
configuration at q=0 may still be interpreted as the ferro-
magnetic state.

From Fig. 8 it is clear that the instability w.r.t. a SSDW is
still present for �=0.9. For higher values of � the instability
disappears and for �=0.5,0.6 the energy has a maximum in
the SSDW region. Thus for values of � which provide good
correlation energies for the UEG in the paramagnetic regime
there is no SSDW formation. In order to understand the rea-

son for this it is instructive to look at various contributions to
the total energy. In Fig. 9 we compare the correlation energy
contribution with the contribution coming from the kinetic
and exchange terms. The minimum is still present consider-
ing only kinetic and exchange contributions but for decreas-
ing � the correlation contribution damps out the instability
more and more. One might suspect that at high densities,
where exchange dominates correlations, the instability sus-
tains. Our findings in Sec. IV A show that in the HF approxi-
mation the energy gain decreases when the density increases,
which is consistent with an analytic argument19 that at high
densities the energy gain by forming a SDW and/or CDW is
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FIG. 7. �Color online� Orbital angles ��k�=0,kz� for various
densities, specified by rs, at the optimal spin-spiral wave vector. The
horizontal dashed line corresponds to the orbital angles at q=0
�ferromagnetic� and the steplike dashed line corresponds to q=2kf

�paramagnetic�. For increasing rs the optimal spin-spiral wave vec-
tor becomes smaller, such that the Fermi spheres, separated at q
=2kf, begin to overlap. In order to gain energy the spin-up and
spin-down orbitals in the overlapping region hybridize and the or-
bital angle � describes the mixing of the spin-up and spin-down
states.

0 0.5 1 1.5 2 2.5 3 3.5
q/kf

-0.002

0

0.002

0.004

0.006

0.008

0.01

e(
q)

-e
(q

=
0)

(a
.u

.)

α=0.5
α=0.6
α=0.7
α=0.8
α=0.9

FIG. 8. �Color online� Total energies per electron of the SSDW
state described with the density-matrix-power functional as a func-
tion of the spin-spiral wave vector q for various values of � at rs

=5.0. The total energy per electron at q=0 is subtracted in order to
emphasize the behavior with increasing q.
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FIG. 6. �Color online� Hartree-Fock single-particle dispersion
�k�=0� at rs=5.0 for the paramagnetic �q�2kf�, the ferromagnetic
�q=0kf�, and the SSDW states �qopt=1.6kf�. The single-particle en-
ergies are shifted such that the dashed horizontal line corresponds to
the Fermi energy for all q. The difference between the two symmet-
ric minima corresponds to the spin-spiral wave vector q. The para-
magnetic dispersion may also be viewed as a spin-spiral dispersion
with the origin in momentum space shifted by �q for the different
spin channels 
cf. Eq. �24��.
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overcome by correlations. Furthermore our results indicate
that correlation effects dominate the SSDW instability also at
intermediate densities.

In order to gain some insight into the role of correlations
we define the relative correlation energy 
ec as


ec
� �

w� − wHF

�e��
. �30�

In Fig. 10 we show the dependence of this quantity on the
spin-spiral wave vector for the correlation parameter �=0.6.
The absolute value of the relative correlation is smallest in
the region of the SSDW instability �q=kf →2kf�, which ex-
plains why the instability is no longer present when correla-
tions are included. Furthermore we can see that the relative
correlation is dominant in the region of the ferromagnetic
configuration. This can be understood by noticing that the
density-matrix-power functional approximates the correla-
tion energy by a prefactor times a Fock integral �most
present-day functionals in RDMFT approximate correlations
in this way13,15,20–28�. Since Fock integrals imply that equal
spins are particularly correlated, one would expect a similar
dependence of the relative correlation energy for other RD-
MFT functionals.

V. SUMMARY AND CONCLUSION

We have investigated the instability of the uniform elec-
tron gas w.r.t. the formation of a spin-spiral density wave
within reduced-density-matrix-functional theory, which in-
cludes the Hartree-Fock approximation as an important lim-
iting case. To our knowledge this is the first numerical
Hartree-Fock study of the noncollinear spin-spiral state in

the electron gas, despite the fact that Overhauser presented
his analytical work on the problem more than four decades
ago. In Overhauser’s work, the optimal spin-spiral wave vec-
tor was not determined. Our study shows that, in contrast to
common belief, the optimal spin-spiral wave vector is not
always close to 2kf. While at high densities we confirm this
value for the optimal wave vector for a single noncollinear
spin spiral, for lower densities �just before the transition to
the ferromagnetic state� the optimal wave vector even ap-
proaches kf. The Monte Carlo studies of Ref. 7 demonstrate
that, when considering a combined collinear spin-density/
charge-density wave, even at high densities the wave vector
of the spin-density wave is not close to 2kf.

Within the framework of reduced-density-matrix-
functional theory we also studied the effect of correlations on
the spin-spiral density wave instability using the recently
proposed density-matrix-power functional. Not unexpect-
edly, we find that the inclusion of correlations suppresses the
instability, which is explained by the behavior of the corre-
lation energy in the region of the spin-spiral density wave
instability.
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