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We study the performance of two different electrode models in quantum transport calculations
based on density functional theory: parametrized Bethe lattices and quasi-one-dimensional wires
or nanowires. A detailed account of implementation details in both the cases is given. From the sys-
tematic study of nanocontacts made of representative metallic elements, we can conclude that the
parametrized electrode models represent an excellent compromise between computational cost and
electronic structure definition as long as the aim is to compare with experiments where the precise
atomic structure of the electrodes is not relevant or defined with precision. The results obtained using
parametrized Bethe lattices are essentially similar to the ones obtained with quasi-one-dimensional
electrodes for large enough cross-sections of these, adding a natural smearing to the transmission
curves that mimics the true nature of polycrystalline electrodes. The latter are more demanding from
the computational point of view, but present the advantage of expanding the range of applicabil-
ity of transport calculations to situations where the electrodes have a well-defined atomic structure,
as is the case for carbon nanotubes, graphene nanoribbons, or semiconducting nanowires. All the
analysis is done with the help of codes developed by the authors which can be found in the quan-
tum transport toolbox ALACANT and are publicly available. © 2011 American Institute of Physics.
[doi:10.1063/1.3526044]

I. INTRODUCTION

One of the most active research fields in nanoscience is
the one focusing on understanding and controlling the charge
transport between bulk electrodes when these are connected
by an atomic- or a molecular-size region and a bias voltage is
applied between them.1 More than ten years of experimental
along with theoretical work is finally taking us to an unprece-
dented level of control and comprehension of these systems.
On the theoretical side, we have witnessed the marriage of
theoretical quantum transport basics and density functional
theory (DFT), giving birth to one of the most active and fruc-
tiferous fields in theoretical nanoscience.2–68

For nanoscopic conductors every atom counts and the
transport properties are strongly dependent on the detailed
atomic arrangement. Thus, in order to make theoretical pre-
dictions that can be compared with experimental results, it is
important, to have a reliable description of, first, the atomic
structure of the conductor and, second, the accompanying
electronic structure. This can be achieved most conveniently
with the aid of ab initio electronic structure methods based
on atomic orbitals such as, e.g., GAUSSIAN,69 CRYSTAL,70 or
SIESTA.71 These codes implement DFT to obtain an effective
mean-field description of the electronic structure of, in our
case, the nanoscopic bridge. This is typically done through the
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effective Kohn–Sham one-body Hamiltonian that takes into
account the electron–electron interactions at a static mean-
field level.

A central challenge in the theoretical description of these
systems is that the electronic structure of the atomic- or
molecular-size conductor is altered by the coupling to the
bulk electrodes. Thus, in calculating the electronic structure
the coupling to the (semiinfinite) electrodes has to be taken
into account. This poses the difficult problem of dealing with
an infinite system without translation invariance. In addition,
one should strictly carry out the electronic and atomic struc-
ture calculation out of equilibirum, as imposed by the applied
voltage. This is usually done by making use of the one-body
Green’s functions (GFs) and the so-called partitioning tech-
nique, as will be explained in the following sections.

Clearly, while the detailed atomic and electronic struc-
ture of the nanoscopic bridge plays a crucial role, farther
away from the bridge these become less important.72 Be-
sides, the exact atomic structure of the bulk electrodes, as
encountered in real experiments, is not known and cannot
be controlled with precision beyond a few contact atoms.73

This lack of control lies behind the statistical deviations ob-
served in measurable quantities such as the conductance.
This brings us to the important question of how to model
the bulk electrodes, maintaining a compromise between re-
alism and computational effort. Several possibilities of how
to model the electrodes have been presented in the literature,
with every model having advantages and disadvantages.2, 5, 8, 9
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Here we explore the use of two types of electrode mod-
els: (i) parametrized tight-binding (TB) Bethe lattices5,7 and
(ii) perfect nanowires of finite cross-section, stressing their
weaknesses and strengths as models to represent the reality.
Another related question which we partially address in this
paper is to what extent the particular shape or atomic arrange-
ment of the electrodes near the bridge introduces variations
in the conductance and how these depend on the chemical na-
ture of the atoms. The results presented below are all obtained
with codes developed by the authors over the years which can
be found in the publicly available quantum transport toolbox
ALACANT.74

II. GREEN’S FUNCTIONS AND LANDAUER
FORMALISMS

In the following, and for completeness’ sake, we give a
summary of the central aspects to the one-body Green’s func-
tion and Landauer formalisms formulated for a nonorthogonal
localized atomic basis set. Although most of the details can
be found in the early literature,4–9, 13–15, 18, 22, 24, 28 here we dis-
cuss in depth some of those that are not usually addressed and
become essential for a correct implementation of the above
mentioned formalisms.

We divide the system into three parts, as shown in
Fig. 1: the semi-infinite left (L) and right (R) electrodes or,
hereon, leads, and the intermediate region between the two
leads hereon called device (D) which contains a central, nar-
row region where most of the scattering takes place (e.g., a
nanoscopic constriction of the same material as the leads or
a trapped molecule). We assume that the leads are only cou-
pled to the scattering region but not to each other. In a lo-
calized atomic basis set the Hamiltonian H of the system is
given by

H =

⎛
⎜⎝

HL HLD 0

HDL HD HDR

0 HRD HR

⎞
⎟⎠ . (1)

Since atomic basis sets are usually nonorthogonal we also
have to take into account the overlap between the atomic or-
bitals given by the matrix S,

S =

⎛
⎜⎝

SL SLD 0

SDL SD SDR

0 SRD SR

⎞
⎟⎠ . (2)

In order to deal with the problem of an infinite system
without translation invariance, it is convenient to make use of
the one-body Green’s functions as explained, e.g., in the book

L R
D

FIG. 1. Sketch of the transport problem. The system is divided into three
parts: L, D, and R.

by Economou.75 The one-body GF is defined as the resolvent
operator of the one-body Schrödinger equation,

(z − Ĥ )Ĝ(z) = Î , (3)

where z is, in general, a complex number and Î is the identity.
If z does not coincide with an eigenvalue εk of the Hamil-

tonian Ĥ the GF operator has the following simple solution:
Ĝ(z) = (z − Ĥ )−1 for z �= εk .

Obviously, for z = εk the GF operator has a pole and
is thus not well-defined. In this case one can define two
GFs by a limiting procedure: the retarded GF is defined as
Ĝ(+)(E) := limη→0+ Ĝ(E + iη), and the advanced GF is de-
fined as Ĝ(−)(E) := limη→0+ Ĝ(E − iη) where E is a real
number (the energy). The retarded (advanced) GF can be an-
alytically continued into the upper (lower) complex plane.
Moreover, away from the poles of Ĝ(z), i.e., for z �= εk both
definitions coincide with Ĝ(z): Ĝ(+)(z) = Ĝ(−)(z) = Ĝ(z).

Because of the nonorthogonality of the basis set it is con-
venient to define the following Green’s function matrix:

(zS − H)G(z) = 1. (4)

Note that this Green’s function matrix is not the standard one
which is simply defined by the matrix elements of the GF op-
erator 〈i |Ĝ(z)| j〉. However, the latter GF matrix is inconve-
nient to handle in the case of nonorthogonal basis sets (see
Appendix A for a complete discussion).

Using the technique explained in Appendix B it can be
shown that the GF of the device region is given by the follow-
ing matrix:

GD(z) = (zSD − HD − �L(z) − �R(z))−1 , (5)

where �L and �R are the so-called lead self-energies which
describe the coupling of the device to the semi-infinite L
and R leads. These self-energies can be calculated from
the Green’s functions of the (isolated) leads, gα(z) = (zSα

− Hα)−1,

�α(z) = (zSDα − HDα) gα(z) (zS†
Dα − H†

Dα), (6)

where the index α denotes the electrode L or R, and we have
exploited the hermiticity of the Hamiltonian and the overlap
matrix, i.e., H†

Dα = HαD and S†
Dα = SαD.

All quantities of interest such as the density of states
(DOS), charge density, current I , and zero-bias as well as
differential conductance d I/dV can be calculated from the
GF matrix of the device region GD and the lead self-energies
�L and �R. For instance, in the case of an effective Kohn–
Sham one-body Hamiltonian, as considered here, the current
through the nanoscopic conductor is given by the famous
Landauer formula,76

I (V ) = 2e

h

∫
d E[ f (E − μL ) − f (E − μR)]T (E), (7)

where f represents the Fermi distribution function; μL and
μR are the left and right chemical potentials which are related
to the applied bias voltage V by eV = μL − μR . The trans-
mission function, T (E), can be calculated from the retarded
and advanced GFs by the Caroli expression,77

T (E) = Tr
[
�L(E)G(−)

D (E)�R(E)G(+)
D (E)

]
. (8)
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Here �L and �R are the so-called coupling matrices which are
defined as

�L(E) := i
(
�

(+)
L (E) − �

(−)
L (E)

)
, (9)

�R(E) := i
(
�

(+)
R (E) − �

(−)
R (E)

)
, (10)

where �(±)
α are the retarded (+) and advanced (−) self-

energies defined in analogy to the retarded and advanced GFs
as �(±)

α (E) = limη→0+ �α(E ± iη). Note that since the self-
energy matrices are usually symmetric, the coupling matrices
are just (twice) the imaginary parts of the self-energies.

At zero temperature the zero-bias conductance is now
just given by the transmission function at the Fermi level μ

(i.e., the electrochemical potential at zero temperature),

G = 2e2

h
× T (μ). (11)

Hence, the transmission function is the central quantity for
calculating the electronic transport properties of nanoscopic
conductors. It is worth noting at this point that there is a con-
troversy on the use of (Kohn–Sham) DFT to calculate the
transmission function. In addition to the obvious fact that
there is no mathematical support to the use of DFT out of
equilibrium, it has been recently argued that a DFT descrip-
tion of the device region can never yield the right value of
the zero-bias conductance, not even using the exact exchange-
correlation potential in case this was known. In fact, the cor-
rections to the DFT zero-bias transmission calculated using
standard functionals can be important in high resistance cases.
We refer the interested reader to Refs. 78 and 79 for a full dis-
cussion of these issues which are beyond the scope of this
work.

III. ELECTRODE MODELS

In the ALACANT toolbox two different codes can be
found, differing in the way the bulk electrodes are imple-
mented. In the first the electrodes can be described by a
parametrized TB Bethe lattice (BL) model with the coordi-
nation and parameters appropriate for the chosen electrode
material. In the second, the electrodes are approximated by
semi-infinite nanowires of finite cross-section described with
a Kohn–Sham Hamiltonian, usually computed at the same
level as that of the scattering region or device.

A. Bethe lattice electrodes

A BL,80 sometimes also called Cayley tree, is generated
by connecting a site with N nearest-neighbors in directions
that can be those of a particular crystalline lattice. The new
N sites are each connected to N − 1 different sites and so on
and so forth. The generated lattice has the local topology of
an actual lattice (number of neighbors and crystal directions)
but in contrast to real crystals two different sites of the BL
can only be connected by one possible path. Hence it is not
possible to form closed loops or rings on the BL connecting
different sites. Therefore it does not describe the long range
order characteristic of real crystals. Figure 2(a) shows the first

(a)

(c)

(b)

FIG. 2. (a) Detail of a Bethe lattice with coordination 6 and (b) detail of
the corresponding crystalline structure. The small circular arrow illustrates a
closed loop or ring connecting different sites of the lattice (see text). (c) 2D
cartoon of a nanocontact (big grey circles) with the first atoms of the Bethe
lattice (small white circles) attached to the outer planes of the nanocontact.

three layers of a BL with coordination 6 and Fig. 2(b) shows
a part of the corresponding real crystal lattice.

The advantage of choosing a BL over other models re-
sides on the one hand in the lack of long-range order which
mimics the polycrystallinity of real electrodes. On the other
hand the BL captures the short-range order since the local co-
ordination of an atom is that of an atom in the bulk crystal of
the corresponding material.

Figure 2(c) illustrates schematically how the device (rep-
resented here by a single-element nanocontact) is connected
to the BL electrodes: for a given chosen atom, typically in
the outer planes of the device, a branch of the BL is added
in the direction τ i of any missing bulk atom (including those
missing in the same plane). The directions in which the tree
branches are added are indicated by white small circles which
represent the first atoms of the branch in that direction. This
corresponds to adding a BL self-energy �τ i to the atom in that
direction (see Appendix C for a derivation of this formula),

�τi (E) = Hτ i [EI − H0 − (�T (E) − �τ̄ i (E))]−1H†
τ i

, (12)

where �T is the sum over all self-energies in all directions
and the bar in τ̄i indicates the opposite direction of τi , i.e.,
τ̄i ≡ −τi . The electrode self-energies �L and �R are thus ob-
tained by summing up the directional BL self-energies �τi in
all directions τi missing on that particular atom �aL/R,τ i for all
the atoms connected to that electrode,

�L/R(E) =
∑

all atoms aL/R
connected to L/R

∑
all missing
directions τ i

�aL/R,τ i (E). (13)

Assuming that the most important structural details of the
electrode are already included in the central cluster, the BLs
should have no other relevance than that of introducing a
generic bulk electrode for a given metal.

In order to compare the results of the BL model with
the actual electronic structure of the corresponding real crys-
tal lattice, we calculate the bulk DOS of the BL from the
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FIG. 3. Comparison of Bethe Lattice DOS resulting from a parametrization obtained from an LDA Hamiltonian (green dashed lines) and from a Papaconstan-
topoulus parametrization (blue dotted lines) with the DOS for a real fcc lattice calculated in LDA (red continuous lines) for the three electrode materials Cu (a),
Al (b), and Ni (c).

imaginary part of the local GF,

ρ0(E) = − 1

π
ImTr[G0(E)], (14)

where the local Green’s function G0 of the Bethe lattice is
given by

G0(E) = (E − H0 − �T (E))−1. (15)

In Fig. 3 we compare the bulk DOS of BL models using dif-
ferent parametrizations with electronic structure calculations
in the local density approximation (LDA) for the three differ-
ent electrode materials considered here (Cu, Al, and Ni). The
BLs have coordination 12, corresponding to the fcc crystalline
structure of the bulk materials. On the one hand we have taken
the TB parameters directly from the nearest-neighbor hop-
pings and on-site energies of the LDA Kohn–Sham Hamil-
tonian of the fcc crystal (ignoring the overlap), where the cal-
culations have been carried out with the help of the CRYSTAL

code. On the other hand we have taken the TB parameters es-
tablished by Mehl and Papaconstantopoulus.81 As can also be
seen from Fig. 3, the BL construction results in all cases in a
smooth DOS which reproduces the basic features of the one
corresponding to a monocrystalline solid. As can be seen in
Fig. 3, depending on the type of material, the use of one set of
parameters or another can result in a more accurate descrip-
tion. However, the choice of parameters should not be deter-
minant in the final conductance results as long as the device
is sufficiently large.

As usual we have assumed an orthonormal basis set for
the Bethe lattice. On the other hand, the basis set of the de-
vice region is typically nonorthogonal. Hence, the question
arises of how to match the two different levels of modeling. A
straightforward approach is to orthogonalize the device basis
set, for example, with the Löwdin orthogonalization scheme
through the transformation H′

D = SD
−1/2HDSD

−1/2. Equiva-
lently, one can deorthogonalize the self-energies �L and �R:
�′

L/R = SD
1/2�L/RSD

1/2.
Alternatively, one can obtain the TB parameters in a

nonorthogonal basis set and take into account the overlap
between orbitals on neighboring atoms in the calculation of
the BL self-energies. In this case the Dyson equation for
the calculation of the BL self-energy is trivially modified

as follows:

�τi (E) = (Hτ i − ESτ i )
[
ES0 − H0

− (�T (E) − �τ̄ i (E))
]−1(

H†
τ i

− ES†
τ i

)
,

where Sτ i is the overlap matrix between orbitals on neighbor-
ing atoms in the direction τ i .

In case of a nonorthogonal basis set one has to take into
account the nondiagonal part of the GF between different sites
of the BL when computing the BL DOS,

ρ0(E) = − 1

π
ImTr

[
G0(E)S0 +

∑
τi

G0,τi (E)Sτi

]
. (16)

This is most easily done by extending the unit cell Hamilto-
nian of the BL with all nearest neighbor sites, computing the
GF GX0(E) of the extended unit cell (X0), and then taking
the partial trace for the central site 0 of the matrix product
GX0(E)SX0,

ρ0(E) = − 1

π
ImTr0[GX0(E)SX0]. (17)

In Fig. 4 we compare the bulk DOS of BL models with
different parametrizations (taking into account the overlap
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FIG. 4. Bethe Lattice DOS with different parametrizations taking into ac-
count overlap between atomic orbitals compared to DOS of real fcc lattice
calculated with LDA (red continuous lines) for Al. The BL parameters have
been taken either directly from the LDA Kohn–Sham Hamiltonian (green
dashed lines) or from the Papaconstantopoulus TB parametrization with over-
lap (blue dotted lines).
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FIG. 5. Sketch of transport problem for the case of one-dimensional
nanowires as electrodes. The system is divided into three parts: L, D,
and R.

between orbitals on neighboring atoms) with LDA electronic
structure calculations for the case of Al. As before we have
taken the TB parameters either directly from the nearest-
neighbor hoppings and on-site energies of the LDA Kohn–
Sham Hamiltonian of the fcc crystal (this time taking into ac-
count the overlap) or we have taken the TB parameters estab-
lished by Mehl and Papaconstantopoulus (this time with over-
lap). Now the BL DOS does not resemble the DOS of a real
crystal lattice anymore: the band width now becomes semi-
infinite extending infinitely to positive energies. This artifact
can only be healed by scaling down the overlap considerably.
We therefore conclude that the introduction of nonorthogonal
basis sets in the description of the BL does not seem to be
very useful for mimicking the DOS of real materials. Instead
it is preferable to use the self-energy deorthogonalization pro-
cedure described above.

B. Nanowire electrodes

The second type of model for the leads consists of semi-
infinite nanowires with finite cross-section where the elec-
tronic structure is described at the same computational level
as that of the device. As indicated in Fig. 5, we subdivide the
one-dimensional leads into unit cells which must be chosen
sufficiently large so that the coupling between nonneighbor-
ing unit cells can be neglected. In general a unit cell consists
of several primitive unit cells of the crystal. The Hamiltonian
matrix of the left lead HL can be subdivided into submatrices
in the following manner:

HL =

⎛
⎜⎜⎜⎜⎜⎝

. . .
. . .

. . . 0

H†
1 H0 H1

H†
1 H0 H1

0 H†
1 H0

⎞
⎟⎟⎟⎟⎟⎠ . (18)

Analogously, the Hamiltonian of the right lead is given by the
following matrix:

HR =

⎛
⎜⎜⎜⎜⎜⎝

H0 H1 0

H†
1 H0 H1

H†
1 H0 H1

0
. . .

. . .
. . .

⎞
⎟⎟⎟⎟⎟⎠ . (19)

In a similar way, the overlap inside the leads is given by the
matrices,

SL =

⎛
⎜⎜⎜⎜⎜⎝

. . .
. . .

. . . 0

S†
1 S0 S1

S†
1 S0 S1

0 S†
1 S0

⎞
⎟⎟⎟⎟⎟⎠ (20)

and

SR =

⎛
⎜⎜⎜⎜⎜⎝

S0 S1 0

S†
1 S0 S1

S†
1 S0 S1

0
. . .

. . .
. . .

⎞
⎟⎟⎟⎟⎟⎠ . (21)

Furthermore, the unit cell of each lead that is immediately
connected to the scattering region (unit cell “l” for the left and
unit cell “r” for the right lead) is included into the device part
of the system. So the Hamiltonian of the device region reads

HD =

⎛
⎜⎝

Hl Hl,S 0l,r

HS,l HS HS,r

0r,l Hr,S Hr

⎞
⎟⎠ (22)

and the overlap matrix is given by

SD =

⎛
⎜⎝

Sl Sl,S 0l,r

SS,l SS SS,r

0r,l Sr,S Sr

⎞
⎟⎠ . (23)

Since only the l- and r-parts of the device region are im-
mediately connected to the two semiinfinite nanowire elec-
trodes the self-energy matrices �L and �R that describe the
coupling of the device region to the electrodes L and R are
given by matrices that are different from zero only in the l-
and r-parts, respectively,

�L(z) =

⎛
⎜⎝

�l(z) 0l,S 0l,r

0S,l 0S 0S,r

0r,l 0r,S 0r

⎞
⎟⎠ (24)

and

�R(z) =

⎛
⎜⎝

0l 0l,S 0l,r

0S,l 0S 0S,r

0r,l 0r,S �r(z)

⎞
⎟⎠ . (25)

As shown in Appendix D, the nonzero submatrices �l and �r

can be calculated from the Hamiltonian and overlap subma-
trices of the two leads by the following Dyson equations:

�l(z) = (
H†

1 − z S†
1

)
(z S0 − H0 − �l(z))−1(H1 − z S1),

(26)

�r(z) = (H1 − z S1) (z S0 − H0 − �r(z))−1
(
H†

1 − z S†
1

)
.

(27)
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IV. SELF-CONSISTENT ELECTRONIC STRUCTURE
OF THE DEVICE

In the context of standard DFT electronic structure calcu-
lations of finite or periodic systems the self-consistent mean-
field electronic potential and the density matrix (or Kohn–
Sham wave functions) are determined by the sole input of
the atomic structure of the cluster or cell, through the cho-
sen exchange-correlation functional. In the context of quan-
tum transport, where the systems are infinite, but present no
translational invariance, the “boundary conditions” imposed
by the electrodes play an additional and important role. The
electronic structure of the device region also depends on the
model chosen to represent the electrodes and the details of
how to carry out the self-consistency may vary, particularly
when out of equilibrium. We discuss now two different alter-
natives: the embedded cluster approach, associated with the
use of BLs (see Sec. III A) and the supercell approach, where
the electrodes are described by nanowires (see Sec. III B).

A. Embedded cluster approach

In the embedded cluster approach the electronic struc-
ture of the infinite system is calculated self-consistently only
within a finite-size region—the scattering or device region
containing the nanoconstriction or molecule—while the elec-
tronic structure of the rest of the system (i.e., the two bulk
electrodes) is fixed from the very beginning to that of a sim-
plified parametrized BL model (see Sec. III A). The basic
premise here is to set up a device region sufficiently large. In
other words, a sufficiently wide section of the bulk electrodes
must be included in the device region so that the interface re-
sistance between the BL and the device, the former being de-
scribed at a lower level of approximation than the latter, does
not contribute significantly to the overall resistance which
is essentially determined by the intrinsic resistance of the
device.

In equilibrium the two leads or electrodes must have
the same electrochemical potential. If the leads are made of
different materials with different work functions, an overall
charge transfer must occur somewhere. This gives rise to an
electric field, shifting the band structures of the two leads rela-
tive to each other, and subsequently aligning the electrochem-
ical potentials of the two leads. The net effect of the charge
transfer on the electronic structure of the bulk electrode ma-
terial outside the device can be taken into account by sim-
ply shifting the electrochemical potentials (and of course the
band structure) of the two materials to a common electro-
chemical potential. Leads of the same material but present-
ing different crystallographic orientations might also present
different work functions, but the BL model cannot account
for this difference. Notice that we have refrained from be-
ing too specific about where the charge transfer takes place.
A localized charge transfer in the device region, typically a
one- or quasione-dimensional system, cannot be entirely re-
sponsible for the electrochemical alignment far away from
the device for obvious electrostatic reasons. One must be cau-
tious with the extent of the region necessary for this trans-
fer to take place. Only for infinite two-dimensional interfaces

between different materials the charge accumulates strictly at
the interface. In the opposite limit of one-dimensional systems
in point contact, the charge transfer must extend logarithmi-
cally into the bulk.82 Regardless of where the charge transfer
takes place, anyway, thermodynamical equilibrium must be
reached.

Taking a common electrochemical potential μ, the
rigid electrostatic shifts are �L = μ − μ0

L and �R = μ − μ0
R

where μ0
L and μ0

R are the electrochemical potentials (or work
functions) of the materials of the left and right electrode, re-
spectively. The lead Hamiltonians corrected by the electro-
static shift are thus given by HL + �LSL and HR + �RSR.
Now the Kohn–Sham Hamiltonian of the entire system (leads
+ device) is given by

HKS =

⎛
⎜⎝

HL + �LSL HLD + �LSLD 0

HDL + �LSDL HD HDR + �RSDR

0 HRD + �RSRD HR + �RSR

⎞
⎟⎠ .

The corresponding overlap matrix that takes into account the
nonorthogonality of the atomic orbitals has of course the same
form as in Eq. (2). Note that now one also has to take into
account the electrostatic shifts when calculating the lead self-
energies according to Eq. (6).

The Kohn–Sham Hamiltonian of the entire system de-
pends only on the electron density nD(�r ) of the device region
since the electronic structure of the rest of the system is kept
fixed (apart from the electrostatic shifts �L and �R which
depend on the electrochemical potential μ): HKS = HKS[nD].
The electron density nD(�r ) can be obtained from the density
matrix of the device region,83

nD(�r ) =
∑

α,β∈D

φα(�r ) Pαβ φ∗
β(�r ), (28)

which in turn is found by integrating (most conveniently done
by analytic continuation to the complex plane) the device part
of the Green’s function,

PD(μ) = − 1

π
Im

∫ μ

−∞
dE G(+)

D (E ; μ), (29)

where the device Green’s function is given by

G(+)
D (E ; μ) = [ESD − HD − �L(E ; μ) − �R(E ; μ)]−1.

(30)

Note that the device GF itself depends implicitly on the chem-
ical potential μ through the self-energies �L and �L due to
the μ-dependence of the electrostatic shifts �L and �R.

Now in order to obtain the electrochemical potential of
the entire system, one has to impose charge neutrality in the
entire system. Since the metallic leads outside the device
region are charge neutral themselves, it suffices to impose
charge neutrality within the device region,

ND(μ) = Tr[PD(μ)SD]

= − 1

π
Im

∫ μ

−∞
dE Tr[G(+)

D (E ; μ) SD]. (31)

Since GD via HD is a functional of the electron density
nD(�r ), the electronic structure of the device region can now
be determined self-consistently, already having taken into
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FIG. 6. Diagram illustrating the self-consistent procedure for calculating the electronic structure in the embedded cluster approach (fat circular arrow)
as explained in the text. The small circular arrow refers to the loop for searching the chemical potential μ that leads to charge neutrality in the device
region Eq. (31).

consideration the effect of the leads through the self-energies
in Eq. (30). For a practical implementation of this procedure
we have created an interface to the quantum chemistry code
GAUSSIAN 03, thus taking advantage of the various DFT im-
plementations that can be found in such a code. Figure 6
shows a schematic picture of the self-consistent calculation
of the electronic structure of the device region as described
above.

Out of equilibrium, i.e., for a finite bias eV = μL − μR

there is an additional contribution to the density matrix which
can be calculated by integrating the so-called lesser GF G<

within the bias window,

Pneq
D (μL, μR) = PD(μR) − i

2π

∫ μL

μR

d E G<
D(E ; μL, μR),

(32)

where we have assumed a positive difference between the L
and R electrochemical potentials, μL − μR > 0. As for the
equilibrium case, charge neutrality must be imposed, e.g., by
setting μR to the appropriate value. In the case of a mean-
field description of the electronic structure the lesser GF can
be easily calculated from the retarded and advanced GFs,

G<
D(E ; μL, μR) = iG(+)

D (E)[ f (E − μL)�L(E)

+ f (E − μR)�R(E)] G(−)
D (E). (33)

For a full discussion of the actual implementation of these
expressions see Ref. 13. We stress here that we are taking
into account the electron–electron interactions in the device
region by an effective mean-field description at the level of
DFT. Thus the device Hamiltonian is an effective Kohn–
Sham one-body Hamiltonian. In this approximation to the
true many-body problem Eqs. (7) and (8) remain valid even
out of equilibrium and at a finite temperature. Note that the
self-consistent calculation of the out of equilibrium electronic
structure of nanoscopic conductors as above is often referred

to as nonequilibrium Green’s functions technique although no
true many-body effects beyond mean-field theory are included
in this description.

B. Supercell approach

In the supercell approach we calculate the electronic
structure of the device region and the electrodes with ab ini-
tio electronic structure programs for periodic systems that use
localized basis sets such as CRSYTAL or SIESTA. We first de-
fine a one-dimensional periodic system consisting of the de-
vice region as the unit cell, as shown in Fig. 7(a). It is crucial
that the device part D contains a sufficiently large portion of
the nanowire electrodes so as to guarantee that the electronic

FIG. 7. Illustration of the supercell approach to calculate the electronic struc-
ture of the device and of the leads: (a) One-dimensional periodic system to
calculate the electronic structure of the device region. (b) and (c) Infinite
nanowires to calculate the electronic structure of the left (L) and right (R)
semi-infinite leads. (d) Sketch of the setup of the physical system: The device
region (D) is suspended between two semi-infinite leads L and R.
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structure of the device region and thus the Hamiltonian HD is
the same as the electronic structure of the device between two
semi-infinite nanowires. In other words, we seek to connect
the two leads L and R far enough away from the scattering
region where the electronic structure has relaxed to that of a
bulk (i.e., infinite) nanowire.

In a similar way, the unit cell Hamiltonian matrix HL/R
0

and hopping matrices between unit cells for left and right
leads HL/R

1 are extracted from periodic calculations of infi-
nite nanowires of finite width [see, Fig. 7(b) and 7(c)]. The
lead self-energies �L, �R which describe the coupling of
the device region D to the semi-infinite nanowires L and R
in the situation depicted in Fig. 7(d) can now be calculated by
the Dyson equations [Eqs. (26) and (27)].

Since the electronic structure of the electrodes has been
calculated for perfect nanowires, the effect of an eventual
charge transfer within the device region has not been taken
into account yet. As pointed out before, the net effect of the
charge transfer, mostly within the device region, on the elec-
tronic structure of the bulk electrode material outside the de-
vice can be taken into account by simply shifting the electro-
chemical potentials (and of course the band structure) of the
two materials to a common electrochemical potential. Hence,
the Kohn–Sham Hamiltonian of the entire system is also given
by Eq. (28), where now the common electrochemical poten-
tial μ is the one obtained from the supercell calculation of
the device region, and μ0

L and μ0
R are the electrochemical po-

tentials obtained from the electronic structure calculations of
the infinite nanowires. The Green’s function of the device re-
gion is given by Eq. (30), where the self-energies �l and �r

are now obtained from the Dyson equations, Eqs. (26) and
(27), but with the energies shifted by the electrostatic shifts
�L = μ − μ0

L and �R = μ − μ0
R,

�l(z) = (
H†

1 − (z + �L) S†
1

)
((z + �L) S0

− H0 − �l(z))−1 (H1 − (z + �L) S1), (34)

�r(z) = (H1 − (z + �R) S1) ((z + �R) S0

− H0 − �r(z))−1
(
H†

1 − (z + �R) S†
1

)
. (35)

By this procedure we have connected the device region D with
two semi-infinite nanowires that have the electronic structure
of bulk, i.e., infinite, nanowires far from the device.

V. COMPARISON OF ELECTRODE MODELS

We now compare results obtained with the two elec-
trode models, i.e., the Bethe lattice and the nanowire elec-
trodes and accompanying different implementations of the
self-consistent procedure. We have chosen for this study an
archetypal metallic nanocontact model formed by two pyra-
midal tips joined by the apex atoms. For the ab initio cal-
culation of the device region and the nanowire electrodes,
we use LDA and the minimal valence basis set by Hurley
et al.84 Should one be interested in a more quantitative study
of the conductance of these systems, it would be convenient
to increase the size of the basis set, but this is not the main
aim of this work. For the Bethe lattice we take the tight-
binding parametrization by Mehl and Papaconstantopoulos,81

FIG. 8. Sketch of the pyramidal nanocontact geometries used in the ab initio
quantum transport calculations with Bethe lattice electrodes. Each column
represents a sequence where the amount of bulk electrode material in the
device region is increased in a distinct way.

obtained by fitting tight-binding parametrizations to DFT cal-
culations. Differences between the different parametrizations
discussed above are essentially irrelevant.

In Fig. 8 we show three different sequences of increas-
ing size for the embedded cluster calculations with Bethe lat-
tice electrodes. The narrowest cross-section or contact atomic
structure is maintained throughout the sequence. In sequence
I, the pyramidal form is maintained for the entire device while
it is increased in size. In this case the Bethe lattices are only
connected to the base layers of the pyramids. In sequences II
and III, only the tips maintain the pyramidal form. The rest
of the device region are finite sections of 001 surfaces of the
fcc crystal lattice. In each step of a sequence an atomic layer
is added. The difference between sequences II and III is the
width of the finite sections of bulk electrode included in the
device region.

In Fig. 9 the sequence of model geometries for the case
of nanowire electrodes is shown. The device region is also
composed of two pyramidal tips and also contains the unit
cells used for the computation of the semiinfinite nanowire
self-energies. In each step the cross-section of the nanowire is
increased.

A. An s-type conductor: Cu

First we have studied the relatively simple situation of
an s-type material, i.e., only s-type electrons are contributing
to the DOS near the Fermi level and hence to the zero-bias
conductance. Here we consider Cu which is a low-resistivity
metal frequently used in nanoelectronics and STM experi-
ments. Figures 10(a)–10(c) show the transmission functions
(near the Fermi level) calculated with Bethe lattice electrodes.
The nanocontacts share the same basic contact geometry but
have different amounts of bulk electrode material included
in the device region according to the different geometry
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FIG. 9. Sketch of the nanocontact geometries and the corresponding
nanowire electrodes used in the ab initio quantum transport calculations with
nanowire electrodes.

sequences explained above and illustrated in Fig. 8. As can
be seen, the individual transmission functions vary for dif-
ferent geometries within each sequence and also between se-
quences. However, the overall shapes of the individual trans-

mission functions are very similar. Near the Fermi level all
transmission functions feature a plateau around one implying
a zero-bias conductance of approximately 1 G0. The origin of
this “quantized” conductance lies in the single open channel
composed of Cu 4s-orbitals which is almost perfectly con-
ducting. The number and orbital composition of the conduct-
ing channels can be extracted as explained in Ref. 85.

Figure 10(d) shows the transmission functions for Cu
nanocontacts with the same basic contact geometry as be-
fore but now with Cu nanowires of finite cross-section serv-
ing as bulk electrodes instead of the Bethe lattices. Now the
transmission functions are more spiky than before, especially
at higher energies. This is somewhat reduced by increasing
the width of the nanowire electrodes since the density of peaks
increases and begins to merge. The origin of this fine structure
in the transmission function lies in the well-defined conduct-
ing channels in the electrodes.34 Interestingly, the plateau of
transmission one near the Fermi level is clearly visible. Also
the overall transmission curves are roughly similar to the ones
obtained before with the Bethe lattice electrodes, at least for
the bigger nanowires. The computational effort is, however,
greatly increased in the latter case.

The relative stability of the T (E) ≈ 1 plateau near
the Fermi level with respect to changes in the size and
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FIG. 10. Transmission functions for Cu nanocontacts with the same tip geometry but for different electrode models. (a)–(c) Transmission functions calculated
with Bethe lattice electrodes for different amounts of bulk electrode material included into the device region according to the three sequences of geometries
shown in Fig. 8. (d) Transmission functions calculated with nanowire electrodes of different diameters according to Fig. 9. The individual transmission curves
have been offset by one in order to distinguish them from each other. The thick black line shows the transmission of the biggest nanocontact with BL electrodes
of sequence III (82–82) for comparison.
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FIG. 11. Transmission functions for Al nanocontacts with the same tip geometry but for different electrode models. (a)–(c) Transmission functions calculated
with Bethe lattice electrodes for different amounts of bulk electrode material included into the device region according to the three sequences of geometries
shown in Fig. 8. (d) Transmission functions calculated with nanowire electrodes of different diameters according to Fig. 9. The individual transmission curves
have been offset by two in order to distinguish them from each other. The thick black line shows the transmission of the biggest nanocontact with BL electrodes
of sequence III (82–82) for comparison.

specific form of the device region or with respect to the
electrode model is of course due to the low sensitivity to
elastic scattering of the very delocalized s-type conduction
electrons. The variations of the transmission curves for the
different electrode models and device regions can still be
attributed to the different interference patterns of the con-
duction electrons. These results are consistent with experi-
mental evidence which shows a sharp but nevertheless finite-
width peak in the conductance histogram of Cu nanocontacts
at 1 G0.

B. An sp-type conductor: Al

We now turn to the slightly more complicated situation
of nanocontacts made from Al, which is an sp-type con-
ductor. In this case we expect that changes in the geome-
try of the nanocontact should have a bigger effect on the
transmission than in the case of a simple s-type conductor
since p-orbitals contributing now to the conductance are more
susceptible to elastic scattering than s-orbitals due to their di-
rectionality. In fact, this can be appreciated in the different
sequences (see Fig. 11). Now, as the device region increases,
the transmission curves present larger variability. Further-

more, the conductance at the Fermi level changes noticeably,
approaching a definite value only for large systems where
we consistently obtain zero-bias conductances below 0.5 G0.
This result does not seem to be in agreement with experi-
mental evidence showing, typically, zero-bias conductances
between 0.5 and 1 G0 for the last conductance plateau be-
fore breaking.86 We remind the reader, however, that a much
more complete statistical analysis is needed to draw con-
clusions in this regard. This analysis was carried out in the
past87 and a good agreement was found between the the-
ory and the experimental results. A common feature to most
transmission curves is a pronounced increase above the Fermi
level. This shoulder or peak originates from the doubly degen-
erate px ,py-channel while the transmission through the s- and
pz-channels is suppressed.88 Again the transmission functions
obtained with the finite cross-section nanowire electrodes
present more structure [see Fig. 11(d)]. As for the BL elec-
trodes the overall transmission curves and the conductance at
the Fermi level change considerably when the width of the
nanowire electrodes is increased. The similarity between the
transmission calculated with the largest nanowire electrodes
and the transmission calculated for the largest nanocontact
with BL electrodes in sequence III is less satisfactory in this
case as can be seen from Fig. 11(d). The reason behind the
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FIG. 12. Transmission functions for Ni nanocontacts with the same tip geometry but for different electrode models. (a)–(c) Transmission functions calculated
with Bethe lattice electrodes for different amounts of bulk electrode material included into the device region according to the three sequences of geometries
shown in Fig. 8. (d) Transmission functions calculated with nanowire electrodes of different diameters according to Fig. 9. The individual transmission curves
have been offset by two in order to distinguish them from each other. The thick black line shows the transmission of the biggest nanocontact with BL electrodes
of sequence III (66–66) for comparison.

larger variability in the transmission curves for Al as com-
pared to Cu, lies in the strong contribution of p-orbitals to the
transmission of the Al contacts. The p-orbitals are very direc-
tional, but at the same time they are almost as diffusive as the
s-orbitals. This makes them very susceptible to changes in the
geometry away from the contact region.

C. An sd-type conductor: Ni

As a last example we consider the case of a nanocon-
tact made out of Ni, an sd material (Fig. 12). This case is the
more complex from the point of view of the electronic struc-
ture since, in principle, six orbitals are expected to contribute
to the conductance at the Fermi level. For simplicity’s sake,
we consider paramagnetic Ni, where the two spin channels
contribute equally to the current. A realistic theoretical treat-
ment aiming at understanding the available experimental re-
sults of truly magnetic Ni has been presented in the past89,90

and will not be repeated here. Contrary to what one might
expect, the transmission at the Fermi level does not depend
too much on the chosen size of the central region or device
when using Bethe lattice electrodes [Figs. 12(a)–12(c)], keep-
ing a fairly constant value around three even for the smallest
systems. The orbital analysis indicates that the s-channel and
two d-channels are mainly the ones responsible for this num-

ber. In the case of nanowire electrodes the transmission curves
now feature many spikes [Fig. 12(d)]. Also the changes in
the transmission upon increasing the width of the nanowires
are appreciable, in particular around the Fermi level. Hence
one needs to increase the cross-section of the wires consid-
erably before converging the transmission to the same degree
as with BL electrodes, at the concomitant computational cost.
However, the situation is not as bad as in the case of the Al
nanocontacts where convergence is not achieved in the case
of nanowire electrodes and only for very large nanocontacts
in the case of BL electrodes. At first this is somewhat sur-
prising since the d-orbitals are even more directional than the
p-orbitals. However, the d-orbitals are much more localized
than the p-orbitals and hence are not as susceptible as the
p-orbitals to changes in the geometry away from the contact
region.

VI. DISCUSSION AND CONCLUSIONS

We have presented a detailed account of the theoretical
and computational treatment of quantum transport in nanos-
tructures. While similar analyses have been reported in the
past, ours mainly focuses on implementation details usually
skipped in the literature but crucial for those interested in de-
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veloping codes as the two presented here. In addition to the
well-known pitfalls in the use of DFT in transport problems,
the way this implementation is carried out determines, to a
good extent, the results or the difficulty in obtaining reliable
results that can be compared with experiments. We have thus
made a critical comparison between the two archetypal types
of electrodes, which is a source of discrepancy and contro-
versy: parametrized versus ab initio. Without pretending our
two codes to be representative of all the other developed by
many groups, we can conclude that the use of parametrized
electrodes presents two advantages with respect to a more
faithful description of the electronic structure of the elec-
trodes. First, the variability between the transmission curves
is greatly reduced even for small devices or central regions
when compared to the use of nanowire electrodes. Second,
the computational cost in the calculation of the self-energy
in the former case can be orders of magnitude smaller than in
the latter, particularly for large cross-section wires. The use of
semi-infinite wires as electrodes is, nevertheless, essential to
properly understand scattering in a variety of systems such as
true semiconducting nanowires, atomic chains,91 carbon nan-
otubes, or graphene nanoribbons.92
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APPENDIX A: REPRESENTATION OF OPERATORS IN
NONORTHOGONAL BASIS SETS

The natural definition for the matrix A of a one-body op-
erator Â in a nonorthogonal basis set (NOBS) {|α〉} is simply
by its matrix elements,

A = (Aαβ) = (〈α| Â|β〉). (A1)

However, the representation of an operator in a NOBS is not
that simple,

Â =
∑
α,β

|α〉(S−1AS−1)αβ〈β|, (A2)

where S = (Sαβ) = (〈α | β〉) is the overlap matrix. It is easy
to see that this definition results in the matrix elements Aαβ

defined above. Then the identity operator in the NOBS repre-
sentation is given by

Î =
∑
α,β

|α〉(S−1)αβ〈β|, (A3)

which is also easy to prove.
Now we define a second matrix,

Ã := S−1AS−1, (A4)

which is the matrix that appears above in the representation
of the operator in an NOBS.

One should take care when using the representation of an
operator in a NOBS. For example, the matrix element of an
operator between two nonorthogonal orbitals |α〉, |β〉 can be

zero, 〈α| Â|β〉 = 0, but the corresponding matrix element of
the matrix Ã does not necessarily vanish due to the multiplica-
tion with the inverse of the overlap matrix on both sides. Thus
there is actually a nonzero contribution of the two orbitals to
the operator although the corresponding matrix element of the
operator is zero.

Orthogonalizing the basis set by the Löwdin orthogonal-
ization scheme,93 the matrices A and Ã are transformed to the
matrix A⊥ = (〈i | Â| j〉) defined in the new orthogonal basis
set {|i〉} according to

A⊥ = S−1/2AS−1/2 = S+1/2ÃS+1/2. (A5)

Though there are also other orthogonalization schemes, the
Löwdin scheme is particularly useful in the context of quan-
tum chemistry methods based on atomic orbitals as the center
of the orthogonalized orbital remains centered on the same
atom as the original nonorthogonal orbital.

APPENDIX B: PARTITIONING METHOD

As explained in Sec. II we model the transport problem
by dividing the system in three parts. Two semi-infinite leads
(L) and (R) with bulk electronic structure are connected to a
finite region called device (D). In a local basis set the Hamilto-
nian and the overlap matrix of the system are given by Eqs. (1)
and (2). Dividing the GF Matrix into submatrices in a similar
manner we obtain the following matrix equation:⎛

⎜⎝
z SL − HL z SLD − HLD 0RL

z SDL − HDL z SD − HD z SDR − HDR

0RL z SRD − HRD z HR − HR

⎞
⎟⎠

×

⎛
⎜⎝

GL(z) GLD(z) GLR(z)

GDL(z) GD(z) GDR(z)

GRL(z) GRD(z) GR(z)

⎞
⎟⎠ =

⎛
⎜⎝

1L 0LD 0LR

0DL 1D 0DR

0RL 0RD 1R

⎞
⎟⎠ .

This yields nine equations for the nine submatrices of the GF
G. We can resolve this matrix equation column wise. Multi-
plying all rows of ES − H with the first column of G yields
three equations for GL, GDL, and GRL which yield

GL(z) = (zSL − HL − �D+R(z))−1,

GDL(z) = gD+R(z) (HDL − zSDL) GL(z),

GRL(z) = gR(z) (HRD − zSRD) GDL(z).

Similarly we obtain from multiplication with the second
column,

GD(z) = (zSD − HD − �L(z) − �R(z))−1,

GLD(z) = gL(z) (HLD − zSLD) GD(z),

GRD(z) = gR(z) (HRD − zSRD) GD(z).
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And finally from multiplication with the third column, we
obtain

GR(z) = (zSR − HR − �D+L(z))−1,

GDR(z) = gD+L(z) (HDR − zSDR) GR(z),

GLR(z) = gL(z) (HLD − zSLD) GDR(z).

We have introduced the Green’s functions of the isolated
left and right lead gL and gR and the corresponding self-
energies �L and �R,

gL(z) ≡ (zSL − HL)−1,

�L(z) ≡ (HDL − zSDL) gL(z) (HLD − zSLD),

gR(z) ≡ (zSR − HR)−1,

�R(z) ≡ (HDR − zSDR) gR(z) (HRD − zSRD).

Furthermore, we have defined the Green’s function of the
device plus the left lead only, gD+L, of the device plus the right
lead only, gD+R, and the corresponding self-energies �D+L

and �D+R each one representing the coupling of one of the
leads to the device and the other lead,

gD+L(z) ≡ (zSD − HD − �L(z))−1,

gD+R(z) ≡ (zSD − HD − �R(z))−1,

�D+R(z) ≡ (HRD − zSRD)gD+L(z)(HDR − zSDR),

�D+L(z) ≡ (HLD − zSLD)gD+R(z)(HDL − zSDL).

APPENDIX C: BETHE LATTICES

In this appendix we discuss how self-energies for BL
used to describe the leads are calculated. A BL is generated
by connecting a site with N nearest-neighbors in directions
that could be those of a particular crystalline lattice. The new
N sites are each one connected to N − 1 different sites and
so on and so forth. The generated lattice has the actual local
topology (number of neighbors and crystal directions) but has
no rings and thus does not describe the long range order char-
acteristic of real crystals. Let n be a generic site connected
to one preceding neighbor n − 1 and N − 1 neighbors of the
following shell (n + i with i = 1, . . . , N − 1). For simplic-
ity’s sake, we carry out the derivation for an orthogonal ba-
sis. Following Appendix D, the generalization to the case of a
nonorthogonal basis is straightforward.

Dyson’s equation for an arbitrary nondiagonal Green’s
function is

(EI − H0)Gn,k = Hn,n−1Gn−1,k +
∑

i=1,...,N−1

Hn,i Gi,k,

(C1)

where k is an arbitrary site, E the energy, and Hi, j is a matrix
that incorporates interactions between orbitals at sites i and
j (bold capital characters are used to denote matrices). H0

is a diagonal matrix containing the orbital levels and I is the
identity matrix. Then, we define a transfer matrix as

Ti−1,i Gi−1, j = Gi, j. (C2)

Multiplying Eq. (C1) by the inverse of Gn−1,n , we obtain

(EI − H0)Tn−1,n = Hn,n−1 +
∑

i=1,...,N−1

Hn,i Tn,i Tn−1,n.

(C3)

Due to the absence of rings the above equation is valid for
any set of lattice sites, and, thus, solving the BL is reduced to
a calculation of a few transfer matrices. Note that a transfer
matrix such as that of Eq. (C2) could also be defined in a
crystalline lattice but in that case it would be useless.

Equation (C3) can be solved iteratively,

Tn−1,n =
[

EI − H0 −
∑

i=1,...,N−1

Hn,i Tn,i

]−1

Hn,n−1.

(C4)

If the orbital basis set and the lattice have full symmetry (in-
cluding inversion symmetry) the different transfer matrices
can be obtained from just a single one through appropriate
rotations. However, this is not always the case (see below).

Before proceeding any further we define self-energies
that can be (and commonly are) used in place of transfer
matrices,

�i, j = Hi, j Ti, j . (C5)

Equation (C4) is then rewritten as

�n−1,n = Hn−1,n

[
EI − H0

∑
i=1,...,N−1

�n,i

]−1

H†
n−1,n.

(C6)

where we have made use of the general property Hn,n−1

= H†
n−1,n .
As discussed hereafter, in a general case of no symmetry

this would be a set of N coupled equations (2N if there is no
inversion symmetry). Symmetry can be broken due to either
the spatial atomic arrangement, the orbitals on the atoms that
occupy each lattice site, or both. When no symmetry exists,
the following procedure has to be followed to obtain the self-
energy in an arbitrary direction. The method is valid for any
basis set or lattice. Let τi be the N nearest-neighbor directions
of the lattice we are interested in and Ĥτi the interatomic inter-
action matrix in these directions. To make connection with the
notation used above note that the vector that joins site n − 1 to
site n, namely, rn − rn−1 would necessarily be one of the lat-
tice directions of the set τi . The self-energies associated with
each direction have to be obtained from the following set of
2N coupled self-consistent equations:

�τi = Hτi

[
EI − H0 − (� T̄ − � τ̄i )

]−1
H†

τi
, (C7)

� τ̄i = Hτ̄i

[
EI − H0 − (�T − �τi )

]−1
H†

τ̄i
, (C8)

where i = 1, . . . , N and τ̄i = −τi . Hτi is the interatomic in-
teraction in the τi direction, and �T and � T̄ are the sums of
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the self-energy matrices entering through all the Cayley tree
branches attached to an atom and their inverses, respectively,
i.e.,

�T =
N∑

i=1

�τi and � T̄ =
N∑

i=1

� τ̄i . (C9)

This set of 2N matrix equations has to be solved iteratively. It
is straightforward to check that, in the cases of full symmetry,
it reduces to the single equation. The local density of states
can be obtained from the diagonal Green’s function matrix,

Gn,n =
[

EI − H0 −
∑

i=1,...,N

�τi

]−1

. (C10)

APPENDIX D: SELF-ENERGY
OF A ONE-DIMENSIONAL LEAD

Here we will derive the Dyson equation (Eq. (27)) for
the calculation of the self-energy of the semi-infinite right
lead. The derivation of the Dyson equation for the left lead
(Eq. (26)) goes in a completely analogous way.

The Hamiltonian matrix HR of the (isolated) semi-infinite
right electrode is defined in Eq. (19) as

HR =

⎛
⎜⎜⎜⎜⎜⎝

H0 H1 0

H†
1 H0 H1

H†
1 H0 H1

0
. . .

. . .
. . .

⎞
⎟⎟⎟⎟⎟⎠ (D1)

and the overlap matrix is given in Eq. (21) as

SR =

⎛
⎜⎜⎜⎜⎜⎝

S0 S1 0

S†
1 S0 S1

S†
1 S0 S1

0
. . .

. . .
. . .

⎞
⎟⎟⎟⎟⎟⎠ . (D2)

To obtain the self-energy of the lead we have to calculate the
GF of the lead from its defining equation,

(zSR − HR)gR(z) = 1. (D3)

In the same way as the Hamiltonian and the overlap ma-
trix we subdivide the GF matrix gR into submatrices corre-
sponding to the unit cells of the lead. Now the above equation
for the right lead’s GF reads⎛
⎜⎜⎝

zS0 − H0 zS1 − H1

zS†
1 − H†

1 zS0 − H0 zS1 − H1

. . .
. . .

. . .

⎞
⎟⎟⎠

⎛
⎜⎜⎝

g1,1 g1,2 . . .

g2,1 g2,2 . . .

...
...

⎞
⎟⎟⎠

=

⎛
⎜⎜⎜⎝

1 0 · · ·
0 1

. . .

...
. . .

. . .

⎞
⎟⎟⎟⎠ . (D4)

As explained in Sec. III B it suffices to calculate the “surface”
GF, i.e., g1,1. From multiplication of the 1st, the 2nd, and so

on until the nth line of (zSR − HR) with the 1st column of
gR(z) we get the following chain of equations:

(zS0 − H0) g1,1(z) + (zS1 − H1) g2,1(z) = 1, (D5)

(
zS†

1 − H†
1

)
g1,1(z) + (zS0 − H0) g2,1(z)

+ (zS1 − H1) g3,1(z) = 0, (D6)

...

(
zS†

1 − H†
1

)
gn−1,1(z) + (zS0 − H0) gn,1(z)

+ (zS1 − H1) gn+1,1(z) = 0. (D7)

For n > 1 the equations for determining gn,1(z) all have the
same structure,

(zS0 − H0) gn,1(z) = (
H†

1 − zS†
1

)
gn−1,1(z)

+ (H1 − zS1) gn+1,1(z). (D8)

We define a transfer matrix for n > 1 by

Tn−1,n(z)gn−1,1(z) = gn,1(z). (D9)

The transfer matrix thus transfers information from site n − 1
to site n of the lead, i.e., from the left to the right. Multiplying
Eq. (D8) by (gn−1,1)−1 we obtain

(zS0 − H0) Tn−1,n(z)

= (H†
1 − zS†

1) + (H1 − zS1) Tn,n+1(z) Tn−1,n(z).

(D10)

Reordering we obtain the following iterative equation for the
transfer matrices:

Tn−1,n(z)

= (zS0 − H0 − (H1 − zS1) Tn,n+1(z))−1 (H†
1 − zS†

1).

(D11)

Since the electrode is semi-infinite it looks the same from
each unit cell when looking to the right. Thus a given
gn−1,1, results always in the same gn,1 independent of n.
Thus the transfer matrix must be independent of n: Tn−1,n(z)
≡ T(z), and Eq. (D11) allows one to determine the T(z) self-
consistently.
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We define the self-energy as �(z) := (H1 − zS1) T(z)
and obtain the Dyson equation for the self-energy as

�(z) = (H1 − zS1) (zS0 − H0 − �(z))−1 (H†
1 − zS†

1).

(D12)

We will now see that this self-energy is indeed identical to the
one defined for the right lead in Eq. (27), i.e., �(z) ≡ �r (E).
By plugging in the definition of the transfer matrix, Eq. (D9),
into Eq. (D5) for determining the surface GF, g1,1, we find

(zS0 − H0) g1,1(z) + (zS1 − H1) T(z) g1,1(z) = 1.

Plugging in the definition of the self-energy we obtain

⇒ (zS0 − H0 + �(z)) g1,1(z) = 1. (D13)

Thus we obtain for the surface GF of the right lead,

g1,1(z) = (zS0 − H0 + �(z))−1. (D14)

And vice versa, the self-energy can be expressed in terms of
the surface GF,

�(z) = (H1 − zS1) g1,1(z) (H†
1 − zS†

1). (D15)

This proves that the self-energy �(z) defined above in terms
of the transfer matrix is identical to the self-energy �r (z) de-
fined earlier in Sec. III B so that the self-energy �r (z) can be
calculated iteratively by the Dyson equation [Eq. (27)].

The proof for the left lead runs completely analogously.
The surface GF of the left lead is now

g−1,−1(z) = (zS0 − H0 + �l (z))−1. (D16)
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