Breaking translational symmetry while maintaining long range order is one fascinating aspect of quasicrystals. For two-dimensional oxide quasicrystals, researchers at the Martin-Luther-University Halle-Wittenberg, the National Institute of Standards and Technology, the Max Planck Institute Halle…
more
In a paper published in Nature Communications, scientists at the Max Planck Institute of Microstructure Physics, Halle have demonstrated broadband, high-efficiency silicon nitride-on-silicon waveguide photodetectors that are monolithically integrated with visible light photonic circuits.
more
In a paper published in Nature Physics, scientists at the Max Planck Institute of Microstructure Physics, Halle show that a lateral Josephson junction made from a type-II Dirac semimetal Nickel di-telluride (NiTe2) and superconducting Niobium (Nb) electrodes exhibits a large nonreciprocal critical…
more
Scientists from the Max Planck Institute of Microstructure Physics found a new mechanism to a novel method of manipulating the ground state of a special class of antiferromagnetic thin films with chiral magnetic ground states.
more
Recently, researchers from the group of Prof. Xinliang Feng (TU Dresden, MPI Halle, Germany) in collaboration with the scientists from Switzerland, Portugal and Spain have succeeded in building carbon-based quantum spin chains, where they captured the emergence of one of the cornerstone models of…
more
Much effort is being made to develop new types of memory devices that can revolutionize the computing paradigm of the past half century. Major breakthroughs are needed, in particular, in the domain of Deep Learning as a subset of Artificial Intelligence. In-memory computing and brain inspired…
more
Racetrack memory devices are novel spintronic memory-storage devices that have been demonstrated to have highly attractive properties, including high speed and density, and non-volatility. A novel feature of these devices is that the digital data is encoded as nanoscopic magnetic domain walls that…
more